Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-04-30T13:20:15.437Z Has data issue: false hasContentIssue false

Relationship among thermal environment, stage of lactation, body characteristics, yield and milk constituents of dairy Gyr cows managed on pasture

Published online by Cambridge University Press:  08 April 2024

Karolini Tenffen De-Sousa*
Affiliation:
Instituto de Zootecnia, Sertãozinho, São Paulo, Brazil
Viviane Andrade Ligori
Affiliation:
Instituto de Zootecnia, Sertãozinho, São Paulo, Brazil Faculdade de Ciências Agronômicas e Veterinárias, Universidade Estadual Paulista, Jaboticabal, São Paulo, Brazil
Caroline Martins Gonçalves
Affiliation:
Instituto de Zootecnia, Sertãozinho, São Paulo, Brazil
João Alberto Negrão
Affiliation:
Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
Matheus Deniz
Affiliation:
Grupo de Estudos em Bovinos Leiteiros, Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
André Rabelo Fernandes
Affiliation:
Associação Brasileira dos Criadores de Gir Leiteiro, Uberaba, Minas Gerais, Brazil
Glayk Humberto Vilela Barbosa
Affiliation:
Associação Brasileira dos Criadores de Gir Leiteiro, Uberaba, Minas Gerais, Brazil
Lenira El Faro
Affiliation:
Instituto de Zootecnia, Sertãozinho, São Paulo, Brazil Faculdade de Ciências Agronômicas e Veterinárias, Universidade Estadual Paulista, Jaboticabal, São Paulo, Brazil
*
Corresponding author: Karolini Tenffen De-Sousa; Email: karoltenffen10@hotmail.com

Abstract

Our aims were to evaluate changes in body characteristics, milk yield and milk constituents as well as to determine the relationship between the thermal environment and production characteristics during the first lactation of dairy Gyr cows managed on pasture. Between 2013 and 2015, forty-five primiparous dairy Gyr cows were evaluated from prepartum to 10 months of lactation in Southeast of Brazil. Body weight, body condition score (BCS), subcutaneous fat thickness (SFT), milk yield (305 d), and milk constituents were collected monthly and progesterone was collected weekly. Additionally, we determined the temperature humidity index (THI) based on microclimate data. Overall, the cows lost body weight until six months of lactation and there was a progressive decrease in BCS, SFT, milk yield and milk lactose as the months in lactation progressed. In contrast, there was an increase in milk fat, milk protein and milk solids. The thermal environment did not pose a consistent heat challenge, nevertheless, we found a positive correlation between the average THI two days before milk collection with milk yield, fat and lactose contents, but in contrast a negative correlation was found with total solids and protein. In conclusion, the THI and months of lactation affected the yield and constituents of milk. However, more studies are necessary to understand the impacts of body characteristics and thermal environment on yield and milk constituents throughout the productive life of Gyr dairy cows.

Type
Research Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of Hannah Dairy Research Foundation

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alvares, CA, Stape, JL, Sentelhas, PC, Gonçalves, JLM and Sparovek, G (2013) Köppen's climate classification map for Brazil. Meteorologische Zeitschrift 22, 711728.CrossRefGoogle Scholar
Barletta, RV, Maturana Filho, M, Carvalho, PD, Del Valle, TA, Netto, AS, Rennó, FP, Mingoti, RD, Gandra, JR, Mourão, GB, Fricke, PM, Sartori, R, Madureira, EH and Wiltbank, MC (2017) Association of changes among body condition score during the transition period with NEFA and BHBA concentrations, milk production, fertility, and health of Holstein cows. Theriogenology 104, 3036.CrossRefGoogle ScholarPubMed
Benavides, R, Vélez Terranova, M, Perilla Duque, S, Campos Gaona, R and Sánchez Guerrero, H (2022) Correlations between bulk tank milk analysis with weather conditions in dairy farms under tropical environments. Italian Journal of Animal Science 21, 217227.CrossRefGoogle Scholar
Bernabucci, U, Biffani, S, Buggiotti, L, Vitali, A, Lacetera, N and Nardone, A (2014) The effects of heat stress in Italian Holstein dairy cattle. Journal of Dairy Science 97, 471486.CrossRefGoogle ScholarPubMed
Bernabucci, U, Basiricò, L, Morera, P, Dipasquale, D, Vitali, A, Piccioli Cappelli, F and Calamari, L (2015) Effect of summer season on milk protein fractions in Holstein cows. Journal of Dairy Science 98, 18151827.CrossRefGoogle ScholarPubMed
Brasil (2011) Ministério da Agricultura, Pecuária e Abastecimento. Instrução Normativa 62, de 29 de dezembro de 2011. Diário Oficial da República Federativa do Brasil, Seção 1.Google Scholar
Bulman, DC and Lamming, GE (1978) Milk progesterone levels in relation to conception, repeat breeding and factors influencing acyclicity in dairy cows. Journal Reproduction Fertility 54, 447458.CrossRefGoogle ScholarPubMed
Caccamo, M, Veerkamp, RF, Licitra, G, Petriglieri, R, La Terra, F, Pozzebon, A and Ferguson, JD (2012) Association of total-mixed-ration chemical composition with milk, fat, and protein yield lactation curves at the individual level. Journal of Dairy Science 95, 61716183.CrossRefGoogle ScholarPubMed
Cardoso, CC, Peripolli, V, Amador, SA, Brandão, EG, Esteves, GIF, Sousa, CMZ, França, MFMS, Gonçalves, FG, Barbosa, FA, Montalvão, TC, Martins, CF, Fonseca Neto, AM and McManus, C (2015) Physiological and thermographic response to heat stress in zebu cattle. Livestock Science 182, 8392.CrossRefGoogle Scholar
Chaudhari, PN, Kapadiya, PS, Gadariya, MR, Gamit, PM and Savaliya, BD (2022) Characteristics, curve and persistency of lactation in Gir cows. International Journal of Livestock Research 12, 1218.Google Scholar
Costa, CN, de Melo, CMR, Machado, CHC, Freitas, AF, Packer, IU and Cobuci, JA (2005) Parâmetros Genéticos Para a Produção de Leite de Controles Individuais de Vacas Da Raça Gir Estimados Com Modelos de Repetibilidade e Regressão Aleatória. Revista Brasileira de Zootecnia 34, 15191530.CrossRefGoogle Scholar
Embrapa – Empresa Brasileira de Pesquisa Agropecuária (2018) Anuário Do Leite 2018: Indicadores, Tendências e Oportunidades Para Quem Vive.Google Scholar
Embrapa – Empresa Brasileira de Pesquisa Agropecuária (2021) Anuário Do Leite 2021: Saúde Única e Total.Google Scholar
Fernandes, AR, El Faro, L, Filho Vercesi, AE, Machado, CHC, Barbero, LM, Bittar, ER and Igarasi, MS (2019) Genetic evolution of milk yield, udder morphology and behavior in Gir dairy cattle. Revista Brasileira de Zootecnia 48, e20180056.CrossRefGoogle Scholar
Ferreira, MBD, Lopes, BC, Azevedo, NA and Ledic, IL (2005) Escore corporal e manejo reprodutivo de vacas Gir leiteiro. Revista Gir Leiteiro 5, 4654.Google Scholar
Lee, S, Cho, K, Park, M, Choi, T and Kim, SC (2016) Genetic parameters of milk β-hydroxy butyric acid and acetone and their genetic association with milk production traits of Holstein cattle. Asian-Australasian Journal of Animal Science 29, 15301540.CrossRefGoogle Scholar
Maggiolino, A, Dahl, GE, Bartolomeo, N, Bernabucci, U, Vitali, A, Serio, G, Cassandro, M, Centoducati, G, Santus, E and De Palo, P (2020) Estimation of maximum thermo-hygrometric index thresholds affecting milk production in Italian Brown Swiss cattle. Journal of Dairy Science 103, 85418553.CrossRefGoogle ScholarPubMed
Mekuriaw, Y (2023) Negative energy balance and its implication on productive and reproductive performance of early lactating dairy cows: review paper. Journal of Applied Animal Research 51, 220229.CrossRefGoogle Scholar
Miranda, CO, Paz, ACAR, Do Bem, RD, Barbosa, GHV, Mercadante, MEZ, Vercesi Filho, AE, Rabelo Fernandes, A and El Faro, L (2022) Validation of body condition score based on subcutaneous fat thickness measurements in primiparous Gyr cows. Animal Production Science 62, 295300.CrossRefGoogle Scholar
NRC, National Research Council (2001) Nutrient Requirements of Dairy Cattle, 7th Edn. Washington, DC, USA: National Academy Publishers.Google Scholar
R Core Team (2022) R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.Google Scholar
Reis, NS, Ferreira, IC, Mazocco, LA, Souza, ACB, Pinho, GAS, Neto, ÁMF, Malaquias, JV, Macena, FA, Muller, AG, Martins, CF, Balbino, LC and McManus, CM (2021) Shade modifies behavioral and physiological responses of low to medium production dairy cows at pasture in an integrated crop-livestock-forest system. Animals 11, 2411.CrossRefGoogle Scholar
Santana, ML, Pereira, RJ, Bignardi, AB, El Faro, L, Tonhati, H and Albuquerque, LG (2014) History, structure, and genetic diversity of Brazilian Gir cattle. Livestock Science 163, 2633.CrossRefGoogle Scholar
Sinclair, KD, Molle, G, Revilla, R, Roche, JF, Quintans, G, Marongiu, T, Sanz, A, Mackey, DR and Diskin, MG (2002) Ovulation of the first dominant follicle arising after day 21 post-partum in suckling beef cows. Animal Science 75, 115126.CrossRefGoogle Scholar
Tao, S, Orellana Rivas, RM, Marins, TN, Chen, YC, Gao, J and Bernard, JK (2020) Impact of heat stress on lactational performance of dairy cows. Theriogenology 150, 437444.CrossRefGoogle ScholarPubMed
Thom, EC (1959) The discomfort index. Weatherwise 12, 5761.CrossRefGoogle Scholar
Thornton, P, Nelson, G, Mayberry, D and Herrero, M (2022) Impacts of heat stress on global cattle production during the 21st century: a modelling study. The Lancet Planetary Health 6, e192e201.CrossRefGoogle ScholarPubMed
Zhang, Z, Gasser, RB, Yang, X, Yin, F, Zhao, G, Bao, M, Pan, B, Huang, W, Wang, C, Zou, F, Zhou, Y, Zhao, J, Fang, R and Hu, M (2016) Two benzimidazole resistance-associated SNPs in the isotype-1 β-tubulin gene predominate in Haemonchus contortus populations from eight regions in China. International Journal for Parasitology: Drugs and Drug Resistance 6, 199206.Google ScholarPubMed
Zimbelman, RB, Rhoads, RP, Rhoads, ML, Duff, GC, Baumgard, LH and Collier, RJ (2009) A re-evaluation of the impact of temperature humidity index (THI) and black globe humidity index (BGHI) on milk production in high producing dairy cows. Proceedings of the Western Dairy Management Conference, Tempe, AZ, University of Arizona, Tucson, pp. 158169.Google Scholar
Supplementary material: File

De-Sousa et al. supplementary material

De-Sousa et al. supplementary material
Download De-Sousa et al. supplementary material(File)
File 1.2 MB