Hostname: page-component-7479d7b7d-8zxtt Total loading time: 0 Render date: 2024-07-12T06:55:01.879Z Has data issue: false hasContentIssue false

Phosphopeptides interacting with colloidal calcium phosphate isolated by tryptic hydrolysis of bovine casein micelles

Published online by Cambridge University Press:  01 June 2009

Valerie Gagnaire
Affiliation:
Institut National de la Recherche Agronomique, Laboratoire de Recherche de Technologic Laitière, 65 rue de St-Brieuc, F-35042 Rennes Cedex, France
Alice Pierre
Affiliation:
Institut National de la Recherche Agronomique, Laboratoire de Recherche de Technologic Laitière, 65 rue de St-Brieuc, F-35042 Rennes Cedex, France
Daniel Molle
Affiliation:
Institut National de la Recherche Agronomique, Laboratoire de Recherche de Technologic Laitière, 65 rue de St-Brieuc, F-35042 Rennes Cedex, France
Joelle Leonil
Affiliation:
Institut National de la Recherche Agronomique, Laboratoire de Recherche de Technologic Laitière, 65 rue de St-Brieuc, F-35042 Rennes Cedex, France

Summary

After extended tryptic hydrolysis of large bovine casein micelles, a mineral-rich peptide fraction was recovered by ultracentrifugation. Its mineral part contained 72% of the colloidal Ca and 49% of the colloidal Pi originally present in the native micelle. Colloidal nitrogenous components were also present, amounting to 27% of the original N content. They contained most of the phosphopeptides and 82% of the micellar phosphoseryl residues. These tryptic peptides were characterized by reversed-phase HPLC on-line electrospray ion source–mass spectrometry analysis. Among the peptides produced 14 phosphopeptides were identified: αs2-CN(l–24), αs2-CN(1–21), αs1-CN(43–79), αs1-CN(35–79)7P, αs1-CN(35–79)8P, αs1-CN(37–79), αs1-CN(104–119), αs1-CN(104–124), β-CN(1–25), β-CN(1–28), β-CN(1–29), β-CN(30–97), β-CN(33–97) and β-CN(29–97). The proportion of the phosphopeptides interacting with colloidal calcium phosphate was correlated with their relative content of phosphoserine residues, since phosphopeptides containing more than four phos-phoserine residues were consistently present within this fraction. It also appeared that other types of peptides, some of them hydrophobic in nature, were also partly or completely present within the colloidal fraction, including αs1-CN(91–100), αs1-CN(152–193), αs1-CN(23–34), αs1-CN(125–193), αs1-CN(125–199), β-CN(177–209), β-CN( 184–209), β-CN(114–169) and β-CN(108–169). Their possible involvement in the micellar backbone is discussed.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adamson, N. J. & Reynolds, E. C. 1995 Characterization of tryptic casein phosphopcptides prepared under industrially relevant conditions. Biotechnology and Bioengineering 45 196204CrossRefGoogle ScholarPubMed
Aoki, T., Kako, Y. & Imamura, T. 1986 Separating of casein aggregates cross-linked by colloidal calcium phosphate from bovine casein micelles by high performance gel chromatography in the presence of urea. Journal of Dairy Research 53 5359CrossRefGoogle Scholar
Aoki, T., Kawahara, A., Kako, Y. & Imamura, T. 1987 a Role of individual milk salt constituents in cross-linking by colloidal calcium phosphate in artificial casein micelles. Agricultural and Biological Chemistry 53 817821Google Scholar
Aoki, T.Umeda, T. & Kako, Y. 1992 The least number of phosphate groups for cross-linking of casein by colloidal calcium phosphate. Journal of Dairy Science 75 971975CrossRefGoogle ScholarPubMed
Aoki, T., Yamada, N. & Kako, Y. 1990 Relation between colloidal calcium phosphate cross-linkage and release of β-casein from bovine casein micelles on cooling. Agricultural and Biological Chemistry 54 22872292Google Scholar
Aoki, T., Yamada, N., Tomita, I., Kako, Y. & Imamura, T. 1987 b Caseins are cross-linked through their ester phosphate groups by colloidal calcium phosphate. Biochimica et Biophysica Acta 911 238243CrossRefGoogle ScholarPubMed
Azuma, N., Aizawa, M. & Yamauchi, K. 1989 Effect of bound phosphate on the calcium-binding ability and calcium-dependent precipitability of human β-casein. Agricultural and Biological Chemistry 53 10371041Google Scholar
Baumy, J. -J., Guenot, P., Sinbandhit, S. & Bruleé, C. 1989 Study of calcium binding to phosphoserine residues of β-casein and its phosphopeptide (1–25) by 31P NMR. Journal of Dairy Research 56 403409CrossRefGoogle Scholar
Bidlingmeyer, B. A., Cohen, S. A. & Tarvin, T. L. 1984 Rapid analysis of amino acids using pre-column derivatization. Journal of Chromatography 336 93104CrossRefGoogle ScholarPubMed
Bigelow, C. C. 1967 On the average hydrophobieity of proteins and the relation between it and protein structure. Journal of Theoretical Biology 16 187211CrossRefGoogle Scholar
Brulé, G., Roger, L.Fauquant, J. & Piot, M. 1982 Phosphopeptides from casein-based material. US Patent no. 4 358 465Google Scholar
Chowdhury, S. K., Katta, V. & Chait, B. T. 1990 Electrospray ionization mass speetrometric peptide mapping: a rapid, sensitive technique for protein structure analysis. Biochemical and Biophysical Research Communications 167 686692CrossRefGoogle Scholar
Creamer, L. K., Berry, G. P. & Mills, O. E. 1977 A study of the dissociation of β-casein from the bovine casein micelle at low temperature. New Zealand Journal of Dairy Science and Technology 12 5866Google Scholar
Dalgleish, D. G. & Law, A. J. R. 1989 pH-Induccd dissociation of bovine casein micelles II. Mineralsolubilization and its relation to casein release. Journal of Dairy Research 56 727735CrossRefGoogle Scholar
Davies, D. T. & Law, A. J. R. 1983 Variation in the protein composition of bovine casein micelles and serum casein in relation to micellar size and milk temperature. Journal of Dairy Research 50 6775CrossRefGoogle Scholar
Downey, W. K. & Murphy, R. F. 1970 The temperature-dependent dissociation of β-casein from bovine casein micelles and complexes. Journal of Dairy Research 37 361372CrossRefGoogle Scholar
Fenn, J. B., Mann, M., Meng, C. K., Wong, S. F. & Whitehouse, C. M. 1990 Electrospray ionization for mass spectrometry of large biomolecules. Science 246 6471CrossRefGoogle Scholar
Green, M. L. 1982 Mode of binding of ionic materials to casein micelles. Journal of Dairy Research 49 99105CrossRefGoogle Scholar
Grosclaude, F. 1988 [Genetic polymorphism in the main milk proteins in cattle. Relationship with milk yield, composition and suitability for cheese production.] INRA Productions Animates 1 517CrossRefGoogle Scholar
Holt, C. 1985 The milk salts: their secretion, concentrations and physical chemistry. In Developments in Dairy Chemistry—3. Lactose and minor constituents, pp. 143181 (Ed. Fox, P. F.) London: Elsevier Applied Science PublishersGoogle Scholar
Holt, C., Davies, D. T. & Law, A. J. R. 1986 Effect of colloidal calcium phosphate content and free calcium ion concentration in the milk serum on the dissociation of bovine casein micelles. Journal of Dairy Research 53 557571CrossRefGoogle Scholar
Hummel, B. C. W. 1959 A modified spectrophotometric determination of chymotrypsin, trypsin and thrombin. Canadian Journal of Biochemistry and Physiology 37 13931399CrossRefGoogle ScholarPubMed
International Dairy Federation. 1982 Cheese and processed cheese products. Determination of total phosphorus content (photometric method). Brussels: IDF (FIL-IDF Provisional Standard no. 33B)Google Scholar
Kawasaki, T. 1991 Hydroxyapatite as a liquid chromatographic packing. Journal of Chromatography 544 147184CrossRefGoogle Scholar
Leaver, J. & Thomson, G. 1993 Influence of heating and cooling on the trypsinolysis of caseins in bovine milk. Milchwissenschaft 48 378382Google Scholar
Le Graët, Y. & Brulé, G. 1993 [The mineral equilibria in milk. Effects of pH and ionic strength on distribution of mineral salts in milk.] Lait 73 5160Google Scholar
Leonil, J., Molle, D., Bouhallab, S. & Henry, G. 1994 Precipitation of hydrophobic peptides from tryptic casein hydrolysate by salt and pH. Enzyme and Microbial Technology 16 591595CrossRefGoogle Scholar
Leonil, J., Molle, D. & Maubois, J. L. 1988 Study of the early stages of tryptic hydrolysis of β-casein. Lait 68 281294CrossRefGoogle Scholar
Lin, S. H. C., Leong, S. L., Dewan, R. K., Bloomfield, V. A. & Morr, C. V. 1972 Effect of calcium ion on the structure of native bovine casein micelles. Biochemistry 11 18181821CrossRefGoogle ScholarPubMed
Morr, C. V. 1967 Effect of oxalate and urea upon ultracentrifugation properties of raw and heated skim milk casein micelles. Journal of Dairy Science 50 17441751CrossRefGoogle Scholar
Ogg, C. L. 1960 Determination of nitrogen by the micro-Kjeldahl method. Journal of the Association of Official Analytical Chemists 43 689693Google Scholar
Ono, T. & Obata, T. 1989 A model for the assembly of bovine casein micelles from F2 and F3 subunits. Journal of Dairy Research 56 453461CrossRefGoogle Scholar
Ono, T., Ohotawa, T. & Takagi, Y. 1994 Complexes of casein phosphopeptide and calcium phosphate prepared from casein micelles by tryptic digestion. Bioscience Biotechnology and Biochemistry 58 13761380CrossRefGoogle Scholar
Pierre, A., Brulé, G. & Fauquant, J. 1983 [Study of calcium exchange in milk with 45Ca.] Lait 63 473489CrossRefGoogle Scholar
Pyne, G. T. & McGann, T. C. A. 1960 The colloidal phosphate of milk. II. Influence of citrate. Journal of Dairy Research 27 917CrossRefGoogle Scholar
Schmidt, D. G. 1982 Association of caseins and casein micelle structure. In Developments in Dairy Chemistry—1. Proteins, pp. 6186 (Ed. Fox, P. F.) London: Elsevier Applied Science PublishersGoogle Scholar
Skoog, B. & Wichman, A. 1986 Calculation of the isoelectric points of polypeptides from the amino acid composition. Trends in Analytical Chemistry 5 8283CrossRefGoogle Scholar
Swaisgood, H. E. 1992 Chemistry of the caseins. In Advanced Dairy Chemistry, vol. 1. Proteins, pp. 63110 (Ed. Fox, P. F.) London: Chapman & HallGoogle Scholar
Van Hooydonk, A. C. M., Hagedoorn, H. G. & Boerrigter, I. J. 1986 pH-induced physico-chemical changes of casein micelles in milk and their effect on renneting. 1. Effects of acidification on physico-chemical properties. Netherlands Milk and Dairy Journal 40 281296Google Scholar
Walstra, P. 1990 On the stability of casein micelles. Journal of Dairy Science 73 19651979CrossRefGoogle Scholar
Walstra, P. & Jenness, R. 1984 Salts. In Dairy Chemistry and Physics. New York: John Wiley & SonsGoogle Scholar
West, D. W. 1986 Review article. Structure and function of the phosphorylated residues of casein. Journal of Dairy Research 53 333352CrossRefGoogle Scholar
Woychik, J. H. & Wondolowski, M. V. 1969 Nitration of tyrosyl residues in κ- and αs1-caseins. Journal of Dairy Science 52 16691672CrossRefGoogle Scholar
Yamauchi, K., Yoneda, Y., Koga, Y. & Tsugo, T. 1969 Exchangeability of colloidal calcium in milk with soluble calcium. Agricultural and Biological Chemistry 33 907914CrossRefGoogle Scholar