Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-18T19:24:31.348Z Has data issue: false hasContentIssue false

Metabolite levels and enzyme activities in the bovine mammary gland at different stages of lactation: I. Metabolite levels related to energy production

Published online by Cambridge University Press:  01 June 2009

Marianne Waldschmidt
Affiliation:
Institute of Physiology, Technical University of Munich, 805 Freising-Weihenstephan, Germany

Summary

Samples of the mammary gland were obtained from heifers, lactating and dry cows by a freeze-clamping technique. Amounts of lactate, pyruvate, malate, ATP, ADP and AMP were determined in the sample extracts and calculated per g fresh weight and per mg DNA. Pyruvate, lactate and AMP amounts showed only minor changes at different stages of lactation, whereas quantities of malate, ATP and ADP were significantly higher in cows giving high milk yields. Pyruvate levels showed seasonal variations parallel to changes in milk composition. NAD: NADH ratios in mammary cytoplasm showed no significant differences between different groups of cattle, whereas ATP: AMP ratios in mammary gland samples were highest in lactating animals.

Type
Research Article
Copyright
Copyright © Proprietors of Journal of Dairy Research 1973

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baldwin, R. L. & Cheng, W. (1969). Journal of Dairy Science 52, 523.Google Scholar
Baldwin, R. L., Lin, H. J., Cheng, W., Cabrera, R. & Ronning, M. (1969). Journal of Dairy Science 52, 183.CrossRefGoogle Scholar
Bauman, D. E., Brown, R. E. & Davis, C. L. (1970). Archives of Biochemistry and Biophysics 140, 237.Google Scholar
Bergmeyer, H. U. (1970). Methoden der enzymatischen Analyse. Weinheim: Verlag Chemie.Google Scholar
Burton, K. (1956). Biochemical Journal 62, 315.Google Scholar
Ceriotti, G. (1955). Journal of Biological Chemistry 214, 59.Google Scholar
Greenbaum, A. L. & Slater, T. F. (1957 a). Biochemical Journal 66, 148.CrossRefGoogle Scholar
Greenbaum, A. L. & Slater, T. F. (1957 b). Biochemical Journal 66, 155.CrossRefGoogle Scholar
Gumaa, K. A., Greenbaum, A. L. & McLean, P. (1971). Proceedings of the 17th Easter School in Agricultural Science, University of Nottingham, 1970, p. 197 (Lactation, ed. Falconer, I. R.). London: Butterworths.Google Scholar
Harkness, M. L. R. & Harkness, R. D. (1956). Journal of Physiology 132, 476.Google Scholar
Karg, H. & Schams, D. (1971). Proceedings of the 17th Easter School in Agricultural Science, University of Nottingham, 1970, p. 141. (Lactation, ed. Falconer, I. R.). London: Butterworths.Google Scholar
Kiermeier, F. & Kirchmeier, O. (1963). Biochemische Zeitschrift 337, 519.Google Scholar
Kirchmeier, O. (1968). Hoppe-Seyler's Zeitschrift für Physiologische Chemie 349, 29.Google Scholar
Kirchmeier, O. (1970). 8th International Congress of Nutrition, Prague, 1969, p. 750 (Excerpta Medica International Congress Series no. 213.)Google Scholar
Marier, J. R. & Boulet, M. (1959). Journal of Dairy Science 42, 1390.Google Scholar
Martin, J. B. & Doty, D. M. (1949). Analytical Chemistry 21, 965.Google Scholar
Munford, R. E. (1964). Dairy Science Abstracts 26, 293.Google Scholar
Munro, H. N. & Fleck, A. (1966). Analyst 91, 78.CrossRefGoogle Scholar
Schams, D. & Karg, H. (1970). Zentralblatt für Veterinärmedizin A 17, 193.CrossRefGoogle Scholar
Veech, R. L., Eggleston, L. V. & Krebs, H. A. (1969). Biochemical Journal 115, 609.CrossRefGoogle Scholar
Wang, D. Y. (1960). Nature 188, 1109.Google Scholar
Williamson, D. H., Lund, P. & Krebs, H. A. (1967). Biochemical Journal 103, 514CrossRefGoogle Scholar