Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-01T03:33:32.243Z Has data issue: false hasContentIssue false

Flagella are an important virulence factor in the subclinical persistence of Escherichia coli in bovine mammary gland

Published online by Cambridge University Press:  16 June 2023

Maysa Serpa Gonçalves*
Affiliation:
Departamento de Medicina Veterinária, Faculdade de Zootecnia e Medicina Veterinária, Universidade Federal de Lavras. Campus Universitário S/N, caixa postal 3037, 37200-900, Lavras, MG, Brazil
Jamila PJ Faria
Affiliation:
Departamento de Medicina Veterinária, Faculdade de Zootecnia e Medicina Veterinária, Universidade Federal de Lavras. Campus Universitário S/N, caixa postal 3037, 37200-900, Lavras, MG, Brazil
Juliana R Silva
Affiliation:
Departamento de Medicina Veterinária, Faculdade de Zootecnia e Medicina Veterinária, Universidade Federal de Lavras. Campus Universitário S/N, caixa postal 3037, 37200-900, Lavras, MG, Brazil
Dircéia AC Custódio
Affiliation:
Departamento de Medicina Veterinária, Faculdade de Zootecnia e Medicina Veterinária, Universidade Federal de Lavras. Campus Universitário S/N, caixa postal 3037, 37200-900, Lavras, MG, Brazil
João B Ribeiro
Affiliation:
Empresa Brasileira de Pesquisa Agropecuária, Embrapa Gado de Leite. Av. Eugênio do Nascimento, 610, Aeroporto 36038-330, Juiz de Fora, MG, Brazil
Alessandro de S Guimarães
Affiliation:
Empresa Brasileira de Pesquisa Agropecuária, Embrapa Gado de Leite. Av. Eugênio do Nascimento, 610, Aeroporto 36038-330, Juiz de Fora, MG, Brazil
Elaine MS Dorneles
Affiliation:
Departamento de Medicina Veterinária, Faculdade de Zootecnia e Medicina Veterinária, Universidade Federal de Lavras. Campus Universitário S/N, caixa postal 3037, 37200-900, Lavras, MG, Brazil
Geraldo M Costa
Affiliation:
Departamento de Medicina Veterinária, Faculdade de Zootecnia e Medicina Veterinária, Universidade Federal de Lavras. Campus Universitário S/N, caixa postal 3037, 37200-900, Lavras, MG, Brazil
*
Corresponding author: Maysa Serpa Gonçalves; Email: maysaserpa@gmail.com

Abstract

We compared the virulence profile and REP-PCR genotypes of Escherichia coli strains isolated from subclinical and clinical mastitis cases and dairy farm environments in Minas Gerais State, Brazil, to determine virulence factors and genotypes potentially associated with subclinical persistence in the udder. The virulence profile was obtained by the search for three virulence genes: lpfA (long polar fimbriae), fliC (flagella), and escN (type III secretion system). Subclinical isolates exhibited mainly the fliC gene (33.33%) and fliC + escN genes (30.30%). Clinical isolates exhibited mainly fliC + escN genes (50%) and environmental isolates the lpfA + escN genes (58.04%). Strains isolated from subclinical mastitis showed 6.75 times more positivity to fliC than environmental isolates. Thirty-four genotypes were observed in the REP-PCR analysis, and clinical mastitis isolates indicated more genetic proximity to dairy farm environment isolates than subclinical mastitis isolates. In conclusion, the results suggested that flagella may be an important virulence factor for mammary persistent E. coli infection in cattle, however, none of the E. coli REP-PCR genotypes were associated with subclinical infection.

Type
Research Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of Hannah Dairy Research Foundation

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Almeida, RA, Dogan, B, Klaessing, S, Schukken, YH and Oliver, SP (2011) Intracellular fate of strains of Escherichia coli isolated from dairy cows with acute or chronic mastitis. Veterinary Research Communications 35, 89101.CrossRefGoogle ScholarPubMed
Bae, IK, Kim, J, Sun, JYH, Jeong, SH, Kim, YR, Wang, KK and Lee, K (2014) Comparison of pulsed-field gel electrophoresis & repetitive sequence-based PCR methods for molecular epidemiological studies of Escherichia coli clinical isolates. Indian Journal of Medical Research 140, 679685.Google ScholarPubMed
Best, A, La Ragione, RM, Sayers, AR and Woodward, MJ (2005) Role for flagella but not intimin in the persistent infection of the gastrointestinal tissues of specific-pathogen-free chicks by Shiga toxin-negative Escherichia coli O157:H7. Infection and Immunity 73, 18361846.Google Scholar
Blum, SE and Leitner, G (2013) Genotyping and virulence factors assessment of bovine mastitis Escherichia coli. Veterinary Microbiology 163, 305312.Google Scholar
Blum, S, Heller, ED, Krifucks, O, Sela, S, Hammer-Muntz, O and Leitner, G (2008) Identification of a bovine mastitis Escherichia coli subset. Veterinary Microbiology 132, 135148.Google Scholar
Blum, SE, Heller, ED and Leitner, G (2014) Long term effects of Escherichia coli mastitis. Veterinary Journal 201, 7277.CrossRefGoogle ScholarPubMed
Blum, SE, Heller, ED, Sela, S, Elad, D, Edery, N and Leitner, G (2015) Genomic and phenomic study of mammary pathogenic Escherichia coli. PLoS ONE 10, 125.Google Scholar
Bradley, AJ (2002) Bovine mastitis: an evolving disease. Veterinary Journal 164, 116128.Google Scholar
Burvenich, C, Van Merris, V, Mehrzad, J, Diez-Fraile, A and Duchateau, L (2003) Severity of E. coli mastitis is mainly determined by cow factors. Veterinary research 33, 521564.CrossRefGoogle Scholar
Buttner, D (2012) Protein export according to schedule: architecture, assembly, and regulation of type III secretion systems from plant- and animal-pathogenic bacteria. Microbiology and Molecular Biology Reviews 76, 262310.CrossRefGoogle ScholarPubMed
Chen, J and Griffiths, MW (1998) PCR differentiation of Escherichia coli from other Gram-negative bacteria using primers derived from the nucleotide sequences flanking the gene encoding the universal stress protein. Letters in Applied Microbiology 27, 369371.CrossRefGoogle ScholarPubMed
Coura, FM, Lage, AP and Heinemann, MB (2014) Escherichia coli pathotypes associated with diarrhea in calves: an update. Pesquisa Veterinaria Brasileira 34, 811818.CrossRefGoogle Scholar
Dego, OK, Oliver, SP and Almeida, RA (2012) Host-pathogen gene expression profiles during infection of primary bovine mammary epithelial cells with Escherichia coli strains associated with acute or persistent bovine mastitis. Veterinary Microbiology 155, 291297.Google Scholar
Dice, LR (1945) Measures of the amount of ecologic association between species. Ecology 26, 297302.CrossRefGoogle Scholar
Dogan, B, Klaessig, S, Rishniw, M, Almeida, RA, Oliver, SP, Simpson, K and Schukken, YH (2006) Adherent and invasive Escherichia coli are associated with persistent bovine mastitis. Veterinary Microbiology 116, 270282.CrossRefGoogle ScholarPubMed
Dogan, B, Rishniw, M, Bruant, G, Harel, J, Schukken, YH and Simpson, KW (2012) Phylogroup and lpfA influence epithelial invasion by mastitis associated Escherichia coli. Veterinary Microbiology 159, 163170.CrossRefGoogle ScholarPubMed
Döpfer, D, Barkema, HW, Lam, TJGM, Schukken, YH and Gaastra, W (1999) Recurrent clinical mastitis caused by Escherichia coli in dairy cows. Journal of Dairy Science 82, 8085.Google Scholar
Döpfer, D, Almeida, RA, Lam, TJGM, Nederbragt, H, Oliver, SP and Gaastra, W (2000) Adhesion and invasion of Escherichia coli from single and recurrent clinical cases of bovine mastitis in vitro. Veterinary Microbiology 74, 331343.CrossRefGoogle ScholarPubMed
Duan, Q, Zhou, M, Zhu, L and Zhu, G (2012) Flagella and bacterial pathogenicity. Journal of Basic Microbiology 53, 18.Google Scholar
Haiko, J and Westerlund-Wikström, B (2013) The role of the bacterial flagellum in adhesion and virulence. Biology 2, 12421267.CrossRefGoogle ScholarPubMed
Hajam, IA, Dar, PA, Shahnawaz, I, Jaume, JC and Lee, JH (2017) Bacterial flagellin – a potent immunomodulatory agent. Experimental and Molecular Medicine 49, 115.CrossRefGoogle ScholarPubMed
Hayashi, F, Smith, KD, Ozinsky, A, Hawn, TR, Yi, EC, Goodlett, DR, Eng, JK, Akira, S, Underhill, DM and Aderem, A (2001) The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410, 10991103.CrossRefGoogle ScholarPubMed
Kalita, A, Hu, J and Torres, AG (2014) Recent advances in adherence and invasion of pathogenic Escherichia coli. Current Opinion in Infectious Diseases 27, 459464.Google Scholar
Kyaw, CM, De Araujo, CR, Lima, MR, Gondim, EGS, Brígido, MM and Giugliano, LG (2003) Evidence for the presence of a type III secretion system in diffusely adhering Escherichia coli (DAEC). Infection, Genetics and Evolution 3, 111117.CrossRefGoogle ScholarPubMed
Leimbach, A, Poehlein, A, Vollmers, J, Görlich, D, Daniel, R and Dobrindt, U (2017) No evidence for a bovine mastitis Escherichia coli pathotype. BMC Genomics 18, 122.Google Scholar
Mahajan, A, Currie, CG, Mackie, S, Tree, J, Mcateer, S, Mckendrick, I, Mcneilly, TN, Roe, A, La Ragione, RM, Woodward, MJ, Gally, DL and Smith, DGE (2009) An investigation of the expression and adhesin function of H7 flagella in the interaction of Escherichia coli O157: H7 with bovine intestinal epithelium. Cellular Microbiology 11, 121137.CrossRefGoogle ScholarPubMed
Markey, B, Leonard, F, Archambault, M, Cullinane, A and Maguire, D (2013) Clinical Veterinary Microbiology. Edinburgh, Elsevier, 2nd edition.Google Scholar
Mohapatra, BR, Broersma, K and Mazumder, A (2007) Comparison of five rep-PCR genomic fingerprinting methods for differentiation of faecal Escherichia coli from humans, poultry and wild birds. FEMS Microbiology Letters 277, 98106.CrossRefGoogle ScholarPubMed
Pedersen, RR, Krömker, V, Bjarnsholt, T, Dahl-Pedersen, K, Buhl, R and Jørgensen, E (2021) Biofilm research in bovine mastitis. Frontiers in Veterinary Science 8, 111.CrossRefGoogle ScholarPubMed
Porcherie, A, Cunha, P, Trotereau, A, Roussel, P, Gilbert, FB, Rainard, P and Germon, P (2012) Repertoire of Escherichia coli agonists sensed by innate immunity receptors of the bovine udder and mammary epithelial cells. Veterinary Research 43, 14.CrossRefGoogle ScholarPubMed
Richards, VP, Lefébure, T, Bitar, PDP, Dogan, B, Simpson, KW, Schukken, YH and Stanhope, MJ (2015) Genome based phylogeny and comparative genomic analysis of intra-mammary pathogenic Escherichia coli. PLoS ONE 10, 111.CrossRefGoogle ScholarPubMed
Robins-Browne, RM, Holt, KE, Ingle, DJ, Hocking, DM, Yang, J and Tauschek, M (2016) Are Escherichia coli pathotypes still relevant in the era of whole-genome sequencing? Frontiers in Cellular and Infection Microbiology 6, 19.CrossRefGoogle ScholarPubMed
Ruegg, PL (2012) New perspectives in udder health management. Veterinary Clinics of North America – Food Animal Practice 28, 149163.Google Scholar
Shpigel, NY, Elazar, S and Rosenshine, I (2008) Mammary pathogenic Escherichia coli. Current Opinion in Microbiology 11, 6065.CrossRefGoogle ScholarPubMed
Sokal, RR and Michener, CD (1958) A Statistical Methods for Evaluating Relationships. University of Kansas Science Bulletin 38, 14091448.Google Scholar
Sousa, CP (2006) The versatile strategies of Escherichia coli pathotypes: a mini review. Journal of Venomous Animas and Toxins Including Tropical Diseases 12, 363373.Google Scholar
Zhou, M, Ding, X, Ma, F, Xu, Y, Zhang, J, Zhu, G and Lu, Y (2019) Long polar fimbriae contribute to pathogenic Escherichia coli infection to host cells. Applied Microbiology and Biotechnology 103, 73177324.CrossRefGoogle ScholarPubMed
Supplementary material: File

Gonçalves et al. supplementary material
Download undefined(File)
File 65.5 KB