Hostname: page-component-7479d7b7d-pfhbr Total loading time: 0 Render date: 2024-07-12T11:27:22.939Z Has data issue: false hasContentIssue false

Citrate utilization in milk by Leuconostoc cremoris and Streptococcus diacetilactis

Published online by Cambridge University Press:  01 June 2009

T. M. Cogan
Affiliation:
National Dairying Research Centre, The Agricultural Institute, Fermoy, Co. Cork, Irish Republic

Summary

Citrate utilization and diacetyl, acetoin and acetaldehyde production by 2 strains each of Leuconostoc cremoris and Streptococcus diacetilactis in milk were studied. With the leuconostoc bacteria no growth and little citrate utilization occurred unless a stimulant (yeast extract) was present, when complete utilization of citrate without concomitant production of diacetyl or acetoin was obtained. The addition of Mn2+ stimulated growth and citrate utilization in the presence of yeast extract. Addition of citric acid after 65-h growth resulted in diacetyl and acetoin production. Destruction of diacetyl and acetoin occurred when the citric acid level fell to c. 1000 and 600 μg/g in the case of Leuc. cremoris FR8-1 and CAF1, respectively. Only strain FR8-1 produced acetaldehyde. In contrast, Str. diacetilactis produced diacetyl, acetoin and acetaldehyde concomitant with citrate utilization.

Type
Research Article
Copyright
Copyright © Proprietors of Journal of Dairy Research 1975

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bills, D. D. & Day, E. A. (1966). Journal of Dairy Science 49, 1473.Google Scholar
Chuang, L. F. & Collins, E. B. (1968). Journal of Bacteriology 95, 2083.CrossRefGoogle Scholar
de Man, J. C. & Galesloot, Th. E. (1962). Netherlands Milk and Dairy Journal 16, 1.Google Scholar
Eschenbruch, R. (1970). Vitis 9, 218.Google Scholar
Harvey, R. J. & Collins, E. B. (1962). Journal of Bacteriology 83, 1005.CrossRefGoogle Scholar
Keenan, T. W. & Lindsay, R. C. (1968). Journal of Dairy Science 51, 188.CrossRefGoogle Scholar
Lightbody, L. G. (1962). Australian Journal of Dairy Technology 17, 36.Google Scholar
Lindsay, R. C. & Day, E. A. (1965). Journal of Dairy Science 48, 665.Google Scholar
Marier, J. R. & Boulet, M. (1958). Journal of Dairy Science 41, 1683.CrossRefGoogle Scholar
Michaelian, M. B., Farmer, R. S. & Hammer, B. W. (1933). Research Bulletin No. 155, Iowa State College of Agriculture and Mechanic Arts.Google Scholar
Michaelian, M. B., Hoecker, W. H. & Hammer, B. W. (1938). Journal of Dairy Science 21, 213.CrossRefGoogle Scholar
Sharpe, M. E., Fryer, T. F. & Smith, D. G. (1966). Technical Series, Society for Applied Bacteriology 1, 69.Google Scholar
Speckman, R. A. & Collins, E. B. (1968). Journal of Bacteriology 95, 174.CrossRefGoogle Scholar
Van Beynum, J. & Pette, J. W. (1939). Journal of Dairy Research 10, 250.Google Scholar
Walsh, B. & Cogan, T. M. (1973). Applied Microbiology 26, 820.CrossRefGoogle Scholar
Walsh, B. & Cogan, T. M. (1974 a). Journal of Dairy Research 41, 25.CrossRefGoogle Scholar
Walsh, B. & Cogan, T. M. (1974 b). Journal of Dairy Research 41, 31.CrossRefGoogle Scholar