Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-16T10:35:25.107Z Has data issue: false hasContentIssue false

503. The properties of New Zealand butters and butterfats: III. Seasonal variations in the nature of the unsaturated acids of butterfat as estimated by spectrophotometric methods

Published online by Cambridge University Press:  01 June 2009

A. K. R. McDowell
Affiliation:
The Dairy Research Institute (N.Z.), Palmerston North, New Zealand

Extract

Variations in the unsaturated acid constituents of butterfat samples from the Manawatu district of the North Island of New Zealand over the months October to April were studied by the spectrophotometric technique, applied both before and after alkali isomerization of the fat.

The seasonal variations in the iodine values of the butterfats were found to be closely related to the changes in oleic acid content. Conjugated dienoic acids, though present in relatively small amounts, showed a somewhat similar seasonal trend in values to oleic acid. The results for percentage content of non-conjugated dienoic acids were low, and they fluctuated considerably from month to month. Conjugated trienoic and tetraenoic acids were absent or present only in traces. Small but fairly consistent quantities of nonconjugated trienoic and tetraenoic acids were found in all samples.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1953

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Cox, G. A. & McDowall, F. H. (1948). J. Dairy Res. 15, 377.CrossRefGoogle Scholar
(2)Hansen, R. P. & Shorland, F. B. (1952). To be published in Biochem. J.Google Scholar
(3)Gillam, A. E., Heilbron, I. M., Hilditch, T. P. & Morton, R. A. (1931). Biochem. J. 25, 30.CrossRefGoogle Scholar
(4)Dann, W. J. & Moore, T. (1933). Biochem. J. 27, 1166.CrossRefGoogle Scholar
(5)Booth, R. G., Kon, S. K., Dann, W. J. & Moore, T. (1935). Biochem. J. 29, 133.CrossRefGoogle Scholar
(6)Dann, W. J., Moore, T., Booth, R. G., Golding, J. & Kon, S. K. (1935). Biochem. J. 29, 138.CrossRefGoogle Scholar
(7)Houston, J., Cotton, A. G., Kon, S. K. & Moore, T. (1939). Biochem. J. 33, 1626.CrossRefGoogle Scholar
(8)Moore, T. (1939). Biochem. J. 33, 1635.CrossRefGoogle Scholar
(9)Hilditch, T. P. & Jasperson, H. (1945). J. Soc. chem. Ind., Lond., 64, 109.CrossRefGoogle Scholar
(10)Mitchell, J. H., Kraybill, H. R. & Zschbile, F. P. (1943). Industr. Engng Chem. (Anal, ed.), 15, 1.Google Scholar
(11)Brice, B. A. & Swain, M. L. (1945). J. opt. Soc. Amer. 35, 532.CrossRefGoogle Scholar
(12)Brice, B. A., Swain, M. L., Schaeffer, B. B. & Ault, W. C. (1945). Oil & Soap, 22, 219.CrossRefGoogle Scholar
(13)Baldwin, A. R. & Daubert, B. F. (1945). Oil & Soap, 22, 180.CrossRefGoogle Scholar
(14)Mattsson, S. (1949). 12th Int. Dairy Congr. Stockholm, 2, 308.Google Scholar
(15)Report of the Spectroscopy Committee (1949). J. Amer. Oil Chem. Soc. 26, 399.CrossRefGoogle Scholar
(16)Hilditch, T. P., Moore, R. A. & Riley, J. P. (1945). Analyst, 70, 68.CrossRefGoogle Scholar
(17) Stand. Specif. Brit. Stand. Instn, no. 769 (1938).Google Scholar
(18)Hilditch, T. P. & Jasperson, H. (1941). J. Soc. chem. Ind., London, 60, 305.CrossRefGoogle Scholar
(19)Shorland, F. B. (1950). Nature, Lond., 166, 745.CrossRefGoogle Scholar
(20)Shorland, F. B. (1951). Private communication.Google Scholar
(21)Schaffer, P. S. & Holm, G. E. (1950). J. Dairy Sci. 33, 865.CrossRefGoogle Scholar
(22)Bosworth, A. W. & Sisson, E. W. (1934). J. biol. Chem. 107, 489.CrossRefGoogle Scholar
(23)Shorland, F. B. & Johannesson, D. J. (1951). Nature, Lond., 168, 75.CrossRefGoogle Scholar