Hostname: page-component-6d856f89d9-26vmc Total loading time: 0 Render date: 2024-07-16T06:38:08.699Z Has data issue: false hasContentIssue false

479. Studies on the biological value of the proteins (nitrogen) of dried skim milk: effects of the addition of certain amino-acids, of age of rat and of level of protein intake

Published online by Cambridge University Press:  01 June 2009

K. M. Henry
Affiliation:
National Institute for Research in Dairying, University of Reading
S. K. Kon
Affiliation:
National Institute for Research in Dairying, University of Reading

Extract

1. It has been shown that the biological value of undeteriorated dried skim milk is depressed to the same extent by the addition of 1·25% L-lysine as by the addition of 1·25% D-lysine. The latter is not used by the rat. It is therefore concluded that the added L-lysine is surplus to the animal's needs and that the apparent lowering of the biological value is due to excretion of the lysine in the urine.

2. The slightly greater loss in the biological value of milk stored in air-pack compared with gas-pack was eliminated by the addition of 0·5% L-histidine to the former. Histidine is not a limiting amino-acid in the control or stored gas-pack milks for either young or adult rats.

3. A lower biological value was found for the control milk with adult than with young rats at 4 and 8% levels of intake. No further lowering in the biological value of the stored milk, deficient in lysine, was observed with adult rats, the value obtained for this milk being independent of the age of the rat. These results are in keeping with the known lowered requirements of the adult rat for lysine.

4. The significance of these findings in relation to the known amino-acid requirements of young and adult rats is discussed.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1952

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Henry, K. M. & Kon, S. K. (1945). Biochem. J. 39, xxvi.CrossRefGoogle Scholar
(2)Henry, K. M., Kon, S. K. & Rowland, S. J. (1946). J. Dairy Res. 14, 403.CrossRefGoogle Scholar
(3)Henry, K. M., Kon, S. K., Lea, C. H. & White, J. C. D. (1948). J. Dairy Res. 15, 292.CrossRefGoogle Scholar
(4)Berg, C. P. (1936). J. Nutrit. 12, 671.CrossRefGoogle Scholar
(5)Foster, G. L., Rittenberg, D. & Schoenheimer, R. (1938). J. biol. Chem. 125, 13.CrossRefGoogle Scholar
(6)Ratner, S., Weissman, N. & Schoenheimer, R. (1943). J. biol Chem. 147, 549.CrossRefGoogle Scholar
(7)Neuberger, A. & Sanger, F. (1944). Biochem. J. 38, 119.CrossRefGoogle Scholar
(8)Osborne, T. B., Mendel, L. B. & Ferry, E. L. (1919). J. biol. Chem. 37, 223.CrossRefGoogle Scholar
(9)Mitchell, H. H. (19231924). J. biol. Chem. 58, 873.CrossRefGoogle Scholar
(10)Mitchell, H. H. & Carman, G. G. (1926). J. biol. Chem. 68, 183.CrossRefGoogle Scholar
(11)Neuberger, A. & Webster, T. A. (1945). Biochem. J. 39, 200.CrossRefGoogle Scholar
(12)Mitchell, H. H. (1947). Arch. Biochem. 12, 293.Google Scholar
(13)Burroughs, E. W., Burroughs, H. S. & Mitchell, H. H. (1940). J. Nutrit. 19, 363.CrossRefGoogle Scholar
(14)Albanese, A. A. & Frankston, J. E. (1945). Johns Hopk. Hosp. Bull. 77, 61.Google Scholar
(15)Bricker, M. L. & Mitchell, H. H. (1947). J. Nutrit. 34, 491.CrossRefGoogle Scholar
(16)Henry, K. M., Kon, S. K. & Watson, M. B. (1937). Milk and Nutrition, Part I, p. 37. Reading: Nat. Inst. Res. Dairying.Google Scholar
(17)de Loureiro, A. (1931). Arch. Patol., Lisboa, 3, 72.Google Scholar
(18)Quenouille, M. H. (1950). Introductory Statistics. London: Butterworth-Springer Ltd.Google Scholar
(19)Fisher, R. A. & Yates, F. (1948). Statistical Tables for Biological, Agricultural and Medical Research, 3rd. ed.London: Oliver and Boyd.Google Scholar
(20)Bartlett, M. S. (1937). J. R. statist. Soc. Suppl. 4, 137.CrossRefGoogle Scholar
(21)Yates, F. (1936). J. agric. Sci. 26, 301.CrossRefGoogle Scholar
(22)Neuberger, A. & Sanger, F. (1944). Biochem. J. 38, 125.CrossRefGoogle Scholar
(23)Folley, S. J., Ikin, E. W., Kon, S. K. & Watson, H. M. S. (1938). Biochem. J. 32, 1988.CrossRefGoogle Scholar
(24)Mitchell, H. H. & Beadles, J. R. (1950). J. Nutrit. 40, 25.CrossRefGoogle Scholar
(25)Block, R. J. & Bolling, D. (1951). The Amino Acid Composition of Proteins and Foods, 2nd ed.Springfield, Ill.: Charles C. Thomas.Google Scholar
(26)Wolf, P. A. & Corley, R. C. (1939). Amer. J. Physiol. 127, 589.CrossRefGoogle Scholar
(27)Wissler, R. W., Steffee, C. H., Frazier, L. E., Woolridge, R. L. & Benditt, E. P. (1948). J. Nutrit. 36, 245.CrossRefGoogle Scholar
(28)Sumner, E. E. (1938). J. Nutrit. 16, 129.CrossRefGoogle Scholar
(29)Block, R. J. & Mitchell, H. H. (19461947). Nutr. Abstr. Rev. 16, 249.Google Scholar