Hostname: page-component-7479d7b7d-qs9v7 Total loading time: 0 Render date: 2024-07-11T02:10:33.366Z Has data issue: false hasContentIssue false

430 Genome-wide meta-analysis identifies novel risk loci for uterine fibroids across multiple ancestry groups

Published online by Cambridge University Press:  03 April 2024

Jeewoo Kim
Affiliation:
Vanderbilt University
Ariel Williams
Affiliation:
National Human Genome Research Institute
Hannah Noh
Affiliation:
Vanderbilt University
Megan M. Shuey
Affiliation:
Vanderbilt University Medical Center BWHS, Black Women’s Health Study eMERGE, Electronic Medical Records and Genomics Network
Todd L. Edwards
Affiliation:
Vanderbilt University Medical Center
Digna R. Velez Edwards
Affiliation:
Vanderbilt University Medical Center
Jacklyn N. Hellwege
Affiliation:
Vanderbilt University Medical Center
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

OBJECTIVES/GOALS: Uterine fibroids are benign tumors of the uterus with a high disease prevalence and burden, yet there are few multi-ancestry genetic studies. This is the largest and most diverse fibroid GWAS to-date. Our goal is to identify novel genetic variants and gene expression pathways associated with fibroids and characterize their biological relevance. METHODS/STUDY POPULATION: We performed a cross-ancestry meta-analysis of GWAS summary statistics from eight datasets. The total sample size was 74,294 cases and 465,810 controls with participants of European (80% of sample), African (4%), East Asian, and Central South Asian (16%) ancestry. We mapped variants to genes with OpenTarget Genetics and used Functional Mapping and Annotation to conduct tissue expression gene-set enrichment and identify lead variants. We used S-PrediXcan to estimate genetically predicted gene expression (GPGE) associated with fibroid risk. This was with models that predicted gene expression across 49 different tissue types. Ingenuity Pathway Analysis compiled significant GPGE genes and their weights with a scientific literature database to identify overlapping pathways. RESULTS/ANTICIPATED RESULTS: We identified 370 independent significant variants. Among these, we identified variants mapped to three novel genes (PAX2, VIP, FOXO3) and eight genes not previously validated (TEKT1, SLC16A11, RPEL1, RASL11B, ASGR1, SLC12A7, TTC28, POLR2A). Many loci have roles in cell cycle regulation or are associated with fibroid risk factors like blood pressure, BMI, and vitamin D levels. Loci were significantly enriched in DNA damage and cell cycle pathways. Of 588 significant predicted expression gene-tissue pairs, 173 unique genes were novel fibroid associations. These genes are also associated with cancers, estradiol, and endometriosis. Top enriched pathways included p53 signaling, HOTAIR, BRCA1DNA damage response, and pulmonary fibrosis signaling. In uterine tissue there were 15 novel GPGE associations. DISCUSSION/SIGNIFICANCE: Using this large and diverse data, we identified novel loci associated with fibroids that are enriched in hormone-response, DNA damage, and cell-cycle pathways. GPGE loci were in tumorigenesis and fibrosis pathways. These novel genetic loci and uterine gene expression findings may provide translational opportunities for novel fibroid treatments.

Type
Precision Medicine/Health
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
© The Author(s), 2024. The Association for Clinical and Translational Science