Skip to main content Accessibility help
×
Home

3127 The effect of common genetic variants in the oxytocin receptor gene on oxytocin response.

  • Manasi Malik (a1), Naiqi Shi (a1), Geraldine Serwald (a1), Grace Y. Lee (a1), Antonina I. Frolova (a1), Céline Galés (a1) and Sarah K. England (a1)...

Abstract

OBJECTIVES/SPECIFIC AIMS: Previous studies suggest that genetic variants in the oxytocin receptor (OXTR) may alter oxytocin dose requirement for labor induction and may increase risk for preterm labor and neurodevelopmental disorders. However, the mechanisms of actions of these variants remain unknown. The goal of this study was to functionally characterize common missense and noncoding variants in OXTR. First, we aimed to determine the effects of missense variants on two major aspects of receptor function: calcium signaling and β-arrestin recruitment. Second, we used allelic expression imbalance assays in an effort to identify regulatory single nucleotide polymorphisms (SNPs) in noncoding regions of OXTR that alter OXTR mRNA expression. METHODS/STUDY POPULATION: We used the Exome Aggregation Consortium database to identify the 12 most prevalent missense single nucleotide variants in OXTR. To determine the functional effects of these variants, we transfected human embryonic kidney cells (a common model system used to study receptor function) with wild type OXTR, variant OXTR, or empty vector control. We used the calcium-sensitive dye Fluo4 to quantify intracellular calcium flux in response to oxytocin treatment, and used bioluminescence resonance energy transfer assays to measure recruitment of the signaling partner β-arrestin to the receptor. To investigate potential effects of noncoding SNPs on OXTR mRNA expression, we quantified allele-specific expression of OXTR in human uterine tissue obtained from participants at the time of Cesarean section. We used next-generation sequencing (Illumina MiSeq) to count alleles of a reporter SNP in OXTR exon 3. RESULTS/ANTICIPATED RESULTS: Of the 12 most prevalent missense single nucleotide variants, four were predicted to be deleterious by PolyPhen variant annotation software. We anticipate that these variants will alter receptor signaling through calcium or β-arrestin pathways. We further observed that a reporter SNP in OXTR exon 3 exhibits significant allelic expression imbalance in a subset of our myometrial tissue samples, indicating that OXTR expression may be regulated by a functional SNP. Our current work focuses on discovering the functional SNPs in OXTR responsible for the pattern of allelic expression imbalance seen in mRNA. In the future, we will seek to explore the effects of these variants on uterine function by using genome editing of uterine smooth muscle cells. DISCUSSION/SIGNIFICANCE OF IMPACT: Our results suggest that both missense and noncoding variants may affect OXTR expression and function. Future studies may suggest that OXTR sequencing, genotyping, or expression analysis would be useful to identify individuals likely to respond or fail to respond to safe doses of oxytocin for labor induction. Personalizing approaches for labor induction in this way would increase the safety of oxytocin and potentially reduce maternal morbidity and mortality.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      3127 The effect of common genetic variants in the oxytocin receptor gene on oxytocin response.
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      3127 The effect of common genetic variants in the oxytocin receptor gene on oxytocin response.
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      3127 The effect of common genetic variants in the oxytocin receptor gene on oxytocin response.
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-ncnd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.

3127 The effect of common genetic variants in the oxytocin receptor gene on oxytocin response.

  • Manasi Malik (a1), Naiqi Shi (a1), Geraldine Serwald (a1), Grace Y. Lee (a1), Antonina I. Frolova (a1), Céline Galés (a1) and Sarah K. England (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed