Skip to main content Accessibility help
×
Home

Pitch properties of infant-directed speech specific to word-learning contexts: a cross-linguistic investigation of Mandarin Chinese and Dutch

  • Mengru HAN (a1) (a2) (a3), Nivja H. DE JONG (a4) (a5) and René KAGER (a2)

Abstract

This study investigates the pitch properties of infant-directed speech (IDS) specific to word-learning contexts in which mothers introduce unfamiliar words to children. Using a semi-spontaneous story-book telling task, we examined (1) whether mothers made distinctions between unfamiliar and familiar words with pitch in IDS compared to adult-directed speech (ADS); (2) whether pitch properties change when mothers address children from 18 to 24 months; and (3) how Mandarin Chinese and Dutch IDS differ in their pitch properties in word-learning contexts. Results show that the mean pitch of Mandarin Chinese IDS was already ADS-like when children were 24 months, but Dutch IDS remained exaggerated in pitch at the same age. Crucially, Mandarin Chinese mothers used a higher pitch and a larger pitch range in IDS when introducing unfamiliar words, while Dutch mothers used a higher pitch specifically for familiar words. These findings contribute to the language-specificity of prosodic input in early lexical development.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Pitch properties of infant-directed speech specific to word-learning contexts: a cross-linguistic investigation of Mandarin Chinese and Dutch
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Pitch properties of infant-directed speech specific to word-learning contexts: a cross-linguistic investigation of Mandarin Chinese and Dutch
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Pitch properties of infant-directed speech specific to word-learning contexts: a cross-linguistic investigation of Mandarin Chinese and Dutch
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike licence (http://creativecommons.org/licenses/by-nc-sa/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the same Creative Commons licence is included and the original work is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use.

Corresponding author

*Corresponding author: E-mail: R.W.J.Kager@uu.nl

References

Hide All
Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for confirmatory hypothesis testing: keep it maximal. Journal of Memory and Language, 68, 255–78.
Bates, D., Kliegl, R., Vasishth, S., & Baayen, H. (2015). Parsimonious mixed models. Available at <http://arxiv.org/abs/1506.04967>
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 148.
Benders, T. (2013). Mommy is only happy! Dutch mothers’ realisation of speech sounds in infant-directed speech expresses emotion, not didactic intent. Infant Behavior and Development, 36(4), 847–62.
Bergelson, E., & Swingley, D. (2012). At 6–9 months, human infants know the meanings of many common nouns. Proceedings of the National Academy of Sciences, 109(9), 3253–8.
Bernstein Ratner, N., & Pye, C. (1984). Higher pitch in BT is not universal: acoustic evidence from Quiché Mayan. Journal of Child Language, 11(3), 515–22.
Bion, R. A. H., Borovsky, A., & Fernald, A. (2013). Fast mapping, slow learning: disambiguation of novel word–object mappings in relation to vocabulary learning at 18, 24, and 30 months. Cognition, 126(1), 3953.
Bloom, P. (2001). Précis of How children learn the meanings of words. Behavioral and Brain Sciences, 24(6), 1095–103.
Boersma, P., & Weenink, D. J. M. (2017). Praat: doing phonetics by computer [Computer program]. Available at <http://www.praat.org/>.
Bortfeld, H., & Morgan, J. L. (2010). Is early word-form processing stress-full? How natural variability supports recognition. Cognitive Psychology, 60(4), 241–66.
Cai, Q., & Brysbaert, M. (2010). SUBTLEX-CH: Chinese word and character frequencies based on film subtitles. PloS one, 5(6), e10729.
Chafe, W. (1976). Givenness, contrastiveness, definiteness, subjects, topics, and point of view. In: Li, C. (Ed.), Subject and topic (pp. 2555). New York: Academic Press.
Cristia, A. (2013). Input to language: the phonetics and perception of infant-directed speech. Language and Linguistics Compass, 7(3), 157–70.
Fenson, L., Marchman, V. A., Thal, D. J., Dale, P. S., & Reznick, J. S. (2007). MacArthur-Bates Communicative Development Inventories: user's guide and technical manual. Baltimore, MD: Brookes.
Fernald, A. (2000). Speech to infants as hyperspeech: knowledge-driven processes in early word recognition. Phonetica, 57, 242–54.
Fernald, A., & Mazzie, C. (1991). Prosody and focus in speech to infants and adults. Developmental Psychology, 27(2), 209–21.
Fernald, A., & Morikawa, H. (1993). Common themes and cultural variations in Japanese and American mothers’ speech to infants. Child Development, 64(3), 637–56.
Fernald, A., & Simon, T. (1984). Expanded intonation contours in mothers’ speech to newborns. Developmental Psychology, 20(1), 104–13.
Fernald, A., Taeschner, T., Dunn, J., Papousek, M., de Boysson-Bardies, B., & Fukui, I. (1989). A cross-language study of prosodic modifications in mothers’ and fathers’ speech to preverbal infants. Journal of Child Language, 16(3), 477501.
Fisher, C., & Tokura, H. (1995). The given–new contract in speech to infants. Journal of Memory and Language, 34(3), 287310.
Goldfield, B. A., & Reznick, J. S. (1990). Early lexical acquisition: rate, content, and the vocabulary spurt. Journal of Child Language, 17(1), 171–83.
Graf Estes, K., & Hurley, K. (2013). Infant-directed prosody helps infants map sounds to meanings. Infancy, 18(5), 797824.
Grassmann, S., & Tomasello, M. (2007). Two-year-olds use primary sentence accent to learn new words. Journal of Child Language, 34(3), 677–87.
Grieser, D. L., & Kuhl, P. K. (1988). Maternal speech to infants in a tonal language: support for universal prosodic features in motherese. Developmental Psychology, 24(1), 1420.
Gundel, J. K. (1999). Topic, focus, and the grammar–pragmatics interface. In Alexander, N. J. & Minnick, M. (Eds.), Proceedings of the 23rd Annual Penn Linguistics Colloquium, vol. 6.1. Penn Working Papers in Linguistics (pp. 185200). Available at <https://repository.upenn.edu/pwpl/vol6/iss1/14>.
Halliday, M. A. K. (1967). Notes on transitivity and theme in English: part 2. Journal of Linguistics, 3(2), 199244.
Han, M., de Jong, N. H., & Kager, R. (2018a). Lexical tones in Mandarin Chinese infant-directed speech: age-related changes in the second year of life. Frontiers in Psychology, 9, 434. https://www.frontiersin.org/article/10.3389/fpsyg.2018.00434
Han, M., de Jong, N. H., & Kager, R. (2018b). Infant-directed speech is not always slower: cross-linguistic evidence from Dutch and Mandarin Chinese. In Bertolini, A. & Kaplan, M. (Eds.), Proceedings of the 42nd Annual Boston University Conference on Language Development (pp. 331–44). Somerville, MA: Cascadilla Press.
Ingram, D. (1995). The cultural basis of prosodic modifications to infants and children: a response to Fernald's universalist theory. Journal of Child Language, 22(1), 223–33.
Johnson, E. K., Lahey, M., Ernestus, M., & Cutler, A. (2013). A multimodal corpus of speech to infant and adult listeners. Journal of the Acoustical Society of America, 134(6), EL534EL540.
Kalashnikova, M., & Burnham, D. (2018). Infant-directed speech from seven to nineteen months has similar acoustic properties but different functions. Journal of Child Language, 45(5), 1035–53.
Keuleers, E., Brysbaert, M., & New, B. (2010). SUBTLEX-NL: a new measure for Dutch word frequency based on film subtitles. Behavior Research Methods, 42(3), 643–50.
Kitamura, C., Thanavishuth, C., Burnham, D., & Luksaneeyanawin, S. (2002). Universality and specificity in infant-directed speech: pitch modifications as a function of infant age and sex in a tonal and non-tonal language. Infant Behavior and Development, 24(4), 372–92.
Kuhl, P. K., Andruski, J. E., Chistovich, I. A., Chistovich, L. A., Kozhevnikova, E. V., Ryskina, V. L., Stolyarova, E. I., Sundberg, U., & Lacerda, F. (1997). Cross-language analysis of phonetic units in language addressed to infants. Science, 277, 684–6.
Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). lmerTest package: tests in linear mixed effects models. Journal of Statistical Software, 82(13). 126.
Li, D. C., & Lee, S. (2006). Bilingualism in East Asia. In Bhatia, T. K. & Ritchie, W. C. (Eds.), The handbook of bilingualism (pp. 742–79). Malden, MA: Blackwell.
Lindblom, B. (1990). Explaining phonetic variation: a sketch of the H&H theory. In Hardcastle, W. J. & Marchal, A. (Eds.), Speech production and speech modelling (pp. 403–39). Dordrecht: Kluwer.
Liu, H.-M., Tsao, F.-M., & Kuhl, P. K. (2009). Age-related changes in acoustic modifications of Mandarin maternal speech to preverbal infants and five-year-old children: a longitudinal study. Journal of Child Language, 36(4), 909–22.
Ma, W., Golinkoff, R. M., Houston, D., & Hirsh-Pasek, K. (2011). Word learning in infant- and adult-directed speech. Language Learning and Development, 7(3), 185201.
Mani, N., & Pätzold, W. (2016). Sixteen-month-old infants’ segment words from infant- and adult-directed speech. Language Learning and Development, 12(4), 499508.
Männel, C., & Friederici, A. D. (2013). Accentuate or repeat? Brain signatures of developmental periods in infant word recognition. Cortex, 49(10), 2788–98.
Martin, A., Igarashi, Y., Jincho, N., & Mazuka, R. (2016). Utterances in infant-directed speech are shorter, not slower. Cognition, 156, 52–9.
Masataka, N. (1992). Pitch characteristics of Japanese maternal speech to infants. Journal of Child Language, 19(2), 213–23.
Narayan, C. R., & McDermott, L. C. (2016). Speech rate and pitch characteristics of infant-directed speech: longitudinal and cross-linguistic observations. Journal of the Acoustical Society of America, 139(3), 1272–81.
Porritt, L. L., Zinser, M. C., Bachorowski, J.-A., & Kaplan, P. S. (2014). Depression diagnoses and fundamental frequency-based acoustic cues in maternal infant-directed speech. Language Learning and Development, 10(1), 5167.
R Core Team (2018). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Online <https://www.R-project.org/>.
Ramírez-Esparza, N., García-Sierra, A., & Kuhl, P. K. (2014). Look who's talking: speech style and social context in language input to infants are linked to concurrent and future speech development. Developmental Science, 17(6), 880–91.
Singh, L., Morgan, J. L., & Best, C. T. (2002). Infants’ listening preferences: Baby talk or happy talk? Infancy, 3(3), 365–94.
Singh, L., Nestor, S., Parikh, C., & Yull, A. (2009). Influences of infant-directed speech on early word recognition. Infancy, 14(6), 654–66.
Soderstrom, M. (2007). Beyond babytalk: re-evaluating the nature and content of speech input to preverbal infants. Developmental Review, 27(4), 501–32.
Soderstrom, M., Blossom, M., Foygel, R., & Morgan, J. L. (2008). Acoustical cues and grammatical units in speech to two preverbal infants. Journal of Child Language, 35(4), 869902.
Song, J. Y., Demuth, K., & Morgan, J. (2010). Effects of the acoustic properties of infant-directed speech on infant word recognition. Journal of the Acoustical Society of America, 128(1), 389400.
Stern, D. N., Spieker, S., Barnett, R. K., & MacKain, K. (1983). The prosody of maternal speech: infant age and context related changes. Journal of Child Language, 10(1), 115.
Styles, S., & Plunkett, K. (2009). What is ‘word understanding’ for the parent of a one-year-old? Matching the difficulty of a lexical comprehension task to parental CDI report. Journal of Child Language, 36(4), 895908.
Tang, P., Xu Rattanasone, N., Yuen, I., & Demuth, K. (2017). Phonetic enhancement of Mandarin vowels and tones: infant-directed speech and lombard speech. Journal of the Acoustical Society of America, 142(2), 493503.
Tardif, T., Fletcher, P., Liang, W., & Kaciroti, N. (2009). Early vocabulary development in Mandarin (Putonghua) and Cantonese. Journal of Child Language, 36(5), 1115–44.
Thiessen, E. D., Hill, E. A., & Saffran, J. R. (2005). Infant-directed speech facilitates word segmentation. Infancy, 7(1), 5371.
Thorson, J. C. (2018). The role of prosody in early word learning: behavioral evidence. In Prieto, P., & Esteve-Gibert, N. (Eds.), The development of prosody in first language acquisition (Vol. 23, 1st ed., pp. 6077). Amsterdam: John Benjamins.
Trainor, L. J., Austin, C. M., & Desjardins, R. N. (2000). Is infant-directed speech prosody a result of the vocal expression of emotion? Psychological Science, 11(3), 188–95.
Van de Weijer, J. (1999). Language input for word discovery (Unpublished Doctoral dissertation), Radboud University Nijmegen, Nijmegen. doi:10.17617/2.2057670.
Wang, Y., Seidl, A., & Cristia, A. (2016). Acoustic characteristics of infant-directed speech as a function of prosodic typology. In Heinz, J., Goedemans, R., & van de Hulst, H. (Eds.), Dimensions of phonological stress (pp. 311–24). Cambridge University Press.
Yip, M. (2002). Tone. Cambridge University Press.
Zangl, R., & Mills, D. L. (2007). Increased brain activity to infant-directed speech in 6- and 13-month-old infants. Infancy, 11(1), 3162.
Zink, I., & Lejaegere, M. (2002). N-CDI's lijsten voor communicatieve ontwikkeling [“Dutch MacArthur CDI's for communicative development”]. Leuven: Acco.

Keywords

Related content

Powered by UNSILO
Type Description Title
WORD
Supplementary materials

Han et al. supplementary material
Han et al. supplementary material

 Word (16 KB)
16 KB

Pitch properties of infant-directed speech specific to word-learning contexts: a cross-linguistic investigation of Mandarin Chinese and Dutch

  • Mengru HAN (a1) (a2) (a3), Nivja H. DE JONG (a4) (a5) and René KAGER (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.