Skip to main content Accessibility help
×
Home
Hostname: page-component-59b7f5684b-fmrbl Total loading time: 0.377 Render date: 2022-09-26T04:37:38.089Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

The supply of glucose to the brain and cognitive functioning

Published online by Cambridge University Press:  31 July 2008

David Benton
Affiliation:
Department of Psychology, University of Wales Swansea, Swansea SA2 8PP
Pearl Y. Parker
Affiliation:
Department of Psychology, University of Wales Swansea, Swansea SA2 8PP
Rachael T. Donohoe
Affiliation:
Department of Psychology, University of Wales Swansea, Swansea SA2 8PP

Extract

Unlike other organs the energy requirement of the brain is met almost exclusively by aerobic glucose degradation (Siesjo, 1978). The energy requirement of the brain is 20–30% of the whole organism at rest, although its weight is only 2%. The energy stores in the brain are extremely small when compared with the high rate of glucose utilisation: thus the brain is reliant on a continuous glucose supply. Only about 30% of glucose is required for direct energy production; much of the remainder is used for the synthesis of amino acids, peptides, lipids and nucleic acids (Siebert, Gessner & Klasser, 1986). Thus a source of glucose is essential for the synthesis of physiologically active amines such as serotonin, noradrenaline and acetylcholine. Although it is well accepted that hypoglycaemia can result in the disruption of cognitive functioning, this is a rare phenomenon and it has usually been assumed that levels of blood glucose, within the normal range, do not influence intellectual functioning. This assumption is discussed in this paper.

Type
Session 2: Physical Factors
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adolfsson, R., Bucht, G., Lithner, F. & Winblad, B. (1980) Hypoglycemia in Alzheimer's disease. Metabolism, 38, 572576.Google Scholar
Alberti, K. G. M., Dornhorst, A. & Rowe, A. S. (1975) Metabolic rhythms in normal and diabetic man. Israel J. med. Sci. 11, 571580.Google ScholarPubMed
Benton, D. (1988) Hypoglycaemia and aggression: a review. Int. J. Neurosci. 41, 163168.CrossRefGoogle ScholarPubMed
Benton, D., Brett, V. & Brain, P. F. (1987) Glucose improves attention and reaction to frustration in children. Biol Psychol. 24, 95100.CrossRefGoogle ScholarPubMed
Benton, D. & Donohoe, R. (1996) Cognitive functioning is susceptible to the level of blood glucose. (submitted for publication).Google Scholar
Benton, D., Kumari, N. & Brain, P. F. (1982) Mild hypoglycaemia and questionnaire measures of aggression. Biol Psychol 14, 129135.CrossRefGoogle ScholarPubMed
Benton, D. & Owens, D. (1993) Blood glucose and human memory. Psychopharmacol. 113, 8388.CrossRefGoogle ScholarPubMed
Benton, D., Owens, D. & Parker, P. (1994) Blood glucose memory and attention. Neuropsychologia, 32, 595607.CrossRefGoogle ScholarPubMed
Benton, D. & Parker, P. Y. (1996) Breakfast blood glucose and cognition. Am. J. clin. Nutr. (in press).Google Scholar
Benton, D. & Sargent, J. (1992) Breakfast blood glucose and memory. Biol. Psychol 33, 207210.CrossRefGoogle ScholarPubMed
Berardi, A., Haxby, J. V., Grady, C. L. & Rapoport, S. I. (1991) Asymmetries of brain glucose metabolism and memory in the healthy elderly. Devl Neuropsychol 7, 8797.CrossRefGoogle Scholar
Berent, S., Giordani, B., Lehtinen, S., Markel, D., Penney, J. B., Buchtel, H. A., Starosta-Rubenstein, S., Hichwa, R. & Young, A. B. (1988) Positron emission tomographic scan investigation of Huntington's disease: Cerebral correlates of cognitive function. Ann. Neurol 23, 541546.CrossRefGoogle Scholar
Blass, J. P. & Zemcov, A. (1984) Alzheimer's disease: a metabolic systems degeneration? Neurochem. Pathol 2, 103114.CrossRefGoogle ScholarPubMed
Blinkhorn, S. F. (1985) Graduate and Managerial Assessment. NFER-Nelson, Winsor.Google Scholar
Boivin, M. J., Giordani, B., Berent, S., Amato, D. A., Lehtinen, S., Koeppe, R. A., Buchtel, H. A., Foster, N. L. & Kuhl, D. E. (1992) Verbal fluency and positron emission tomographic mapping of regional cerebral glucose metabolism. Cortex, 28, 231239.CrossRefGoogle ScholarPubMed
Bolton, R. (1973) Aggression and hypoglycaemia among the Quolla: a study in psycho-biological anthropology. Ethnology, 12, 227257.CrossRefGoogle Scholar
Bolton, R. (1976) Hostility in fantasy: a further test of the hypoglycaemia-aggression hypothesis. Aggres. Behav. 2, 257274.3.0.CO;2-S>CrossRefGoogle Scholar
Bucht, G., Adolfsson, R., Lithner, F. & Winblad, B. (1983) Changes in blood glucose and insulin secretion in patients with senile dementia of Alzheimer type. Acta med. scand. 213, 387392.CrossRefGoogle ScholarPubMed
Chase, T. N., Fedio, P., Foster, N. L., Brooks, R., di Chiro, G. & Mansi, L. (1984) Wechsler adult intelligence scale performance: cortical localization by flurodeoxyglucose F 18-positron emission tomography. Archs Neurol. 41, 12441247.CrossRefGoogle Scholar
Craft, S., Dagogo-Jack, S. E., Wiethop, B. V., Murphy, C., Nevins, R. T., Fleischman, S., Rice, V., Newcomer, J. W. & Cryer, P. E. (1993) The effects of hyperglycemia on memory and hormone levels in dementia of the Alzheimer type: a longitudinal study. Behav. Neurosci. 107, 926–240.CrossRefGoogle ScholarPubMed
Craft, S., Murphy, C. & Wemstrom, J. (1994) Glucose effects on complex memory and non-memory tasks: the influence of age, sex and glucoregulatory response. Psychobiology, 22, 95105.Google Scholar
Craft, S., Zallen, G. & Baker, L. D. (1992) Glucose and memory in mild senile dementia of the Alzheimer type. J. clin. exp. Neuropsychol. 14, 253267.CrossRefGoogle ScholarPubMed
Craigie, E. H. (1920) On the relative vasculanty of various parts of the central nervous system of the albino rat. J. comp. Neurol. 31, 429464.CrossRefGoogle Scholar
Deary, I. J. (1992) Diabetes hypooglycaemia and cognitive performance. In: Handbook of Human Performance. Edited by Smith, A. P. & Jones, D. M.. Academic Press, London.Google Scholar
De Leon, M. J., George, A. E., Ferris, S. H., Christman, D. R., Fowler, J. S., Gentes, C. I., Brodie, J., Reisberg, B. & Wolf, A. P. (1984) Positron emission tomography and computed tomography assessments of the aging human brain. J. Computer Assisted Tomography, 8, 8894.CrossRefGoogle ScholarPubMed
Duara, R., Grady, C., Haxby, J., Ingvar, D., Sokoloff, L., Margolin, A., Manning, R. G., Cutler, N. R. & Rapoport, S. I. (1984) Human brain glucose utilization and cognitive function in relation to age. Ann. Neurol. 16, 702713.CrossRefGoogle Scholar
Foster, N. L., Chase, T. N., Fedio, P., Patronas, N. J., Brooks, R. A. & Di Chiro, G. (1983) ALzheimer's disease: focal cortical changes shown by positron emission tomography. Neurology, 33, 961965.CrossRefGoogle ScholarPubMed
Foster, N. L., Chase, T. N., Mansi, L., Brooks, R., Patronas, N. J. & Di Chiro, G. (1984) Cortical abnormalities in Alzheimer's disease. Ann. Neurol. 16, 649654.CrossRefGoogle ScholarPubMed
Fredericks, C. & Goodman, H. (1969) Low Blood Sugar and You. Constellation International, New York.Google Scholar
Genuth, S. M. (1973) Plasma insulin and glucose profiles in normal, obese and diabetic persons. Ann. intern. Med. 79, 812822.CrossRefGoogle ScholarPubMed
Gibson, G. E., Barclay, L. & Blase, J. (1982) The role of the cholinergic system in thiamin deficiency. Ann. N. Y. Acad Sci. 378, 382403.CrossRefGoogle ScholarPubMed
Gold, P. E. (1986) Glucose modulation of memory storage processing. Behav. neur. Biol. 45, 342349.CrossRefGoogle ScholarPubMed
Gold, P. E. & Stone, W. S. (1988) Neuroendocrine effects on memory in aged rodents and humans. Neurobiol. Aging, 9, 709717.CrossRefGoogle ScholarPubMed
Gold, P. E., Vogt, J. & Hall, J. L. (1986) Glucose effects on memory: behavioral and pharmacological characteristics. Behav. neur. biol 46, 145155.CrossRefGoogle ScholarPubMed
Gonder-Frederick, L., Hall, J. L., Vogt, J., Cox, D. J., Green, J. & Gold, P. E. (1987) Memory enhancement in elderly humans: effects of glucose ingestion. Physiol. Behav. 41 503504.CrossRefGoogle ScholarPubMed
Grady, C. L. (1984) Neuropsychology and cerebral metabolism in normal aging. Ann. intern. Med 101, 358360.Google Scholar
Haler, R. J., Siegel, B. V., MacLachlan, A., Soderling, E., Lotienberg, S. & Buchsbaum, M. S. (1992a) Regional glucose metabolic changes after learning a complex visuospatial motor task—a positron emission tomographic study. Brain Res. 570, 134143.Google Scholar
Haier, R. J., Siegel, B. V., Nuechterlein, K. H., Hazlett, E., Wu, J. C., Paek, J., Browning, H. L. & Buchsbaum, M. S. (1988) Cortical glucose metabolic rate correlated of abstract reasoning and attention studied using positron emission tomography. Intelligence, 12, 199217.CrossRefGoogle Scholar
Haier, R. J., Siegel, B., Tang, C., Abel, L. & Buchsbaum, M. S. (1992b) Intelligence and changes in regional cerebral metabolic rate following learning. Intelligence, 16, 415426.CrossRefGoogle Scholar
Hall, J. L. & Gold, P. E. (1990) Adrenalectomy-induced memory deficits: role of plasma glucose levels. PhysioL Behav. 47, 2733.CrossRefGoogle ScholarPubMed
Hall, J. L., Gonder-Frederick, L. A., Chewning, W. W., Silveira, J. & Gold, P. E. (1989) Glucose enhancement of performance on memory tests in young and aged humans. Neuropsychologia, 27, 11291138.CrossRefGoogle Scholar
Hansen, A. P. & Johansen, K. (1970) Diurnal patterns of blood glucose, serum free acids, insulin, glucagon and growth hormone in normals and juvenile diabetics. Diabetologia, 6, 2733.CrossRefGoogle ScholarPubMed
Harris, S. (1924) Hyperinsulinism and dysinsulinism. J. Am. med Ass. 83, 729.CrossRefGoogle Scholar
Hawkins, R. A., Mans, A. M., Davis, D. W., Hibbard, L. S. & Lu, D. M. (1983) Glucose availability to individual cerebral structures is correlated to glucose metabolism. J. Neurochem. 40, 10131018.CrossRefGoogle ScholarPubMed
Haxby, J. V., Duara, R., Grady, C. L., Culter, N. R. & Rapoport, S. I. (1985) Relations between neuropsychological and cerebral metabolic asymmetries in early ALzheimer's disease. J. Cerebral Blood Flow Metab. 5, 193200.CrossRefGoogle ScholarPubMed
Haxby, J. V., Grady, C. L., Duara, R., Robertson-Tchabo, E., Koziarz, B., Cutler, N. R. & Rapaport, S. I. (1986) Relations among age visual memory and resting cerebral metabolism in 40 healthy men. Brain & Cognition, 5, 412427.CrossRefGoogle ScholarPubMed
Holmes, C. S., Hayford, J. T., Gonzalez, J. L. & Weydert, J. A. (1983) A survey of cognitive functioning at different glucose levels in diabetic persons. Diabetes Care, 6, 180185.CrossRefGoogle Scholar
Holmes, C. S., Koepke, K. M. & Thompson, R. G. (1986) Simple versus complex impairment at three blood glucose levels. Psychoneuroendocrinol 11, 353357.CrossRefGoogle Scholar
Hoyer, S. (1993) Intermediary metabolism disturbance in AD/SDAT and its relation to molecular events. Progr. Neuropsychopharmacol. 17, 199228.CrossRefGoogle ScholarPubMed
Hoyer, S., Oesterreich, K. & Wagner, O. (1988) Glucose metabolism as the site of the primary abnormality in early-onset dementia of Alzheimer type. J. Neurol 235, 143148.CrossRefGoogle ScholarPubMed
Jagust, W. J., Ceab, J. P., Huesman, R. H., Valk, P. E., Mathis, C. A., Rend, B. R., Coxson, P. & Budinger, T. F. (1991) Diminished glucose transport in Alzheimer's disease: dynamic PET studies. J. Cerebral Blood Flow Metab. 11, 323330.CrossRefGoogle ScholarPubMed
Kalaria, R. N., Mitchell, M. J. & Harik, S. I. (1988) Chemical pathology of cerebral vessels in Alzheimer's disease. Soc. Neurosci. Abstr. 14, 154.Google Scholar
Karbe, H., Herholz, K., Szelles, B., Pawlick, G., Wienhard, K. & Heiss, W. D. (1989) Regional metabolic correlated of Token test results in cortical and subcortical left hemisphere infarction. Neurology, 39, 10831088.CrossRefGoogle Scholar
Keul, J., Huber, G., Lehmann, M., Berg, A. & Jakob, E. F. (1982) EinfluB von dextrose auf fahrleistung, konzentrationsfahigkeit, kreislauf und stoffwechsel im kraftfahrzeug-simulator (Doppelblindstudie im cross-over-design). Aktuelle Ernaehrungsmedizin, 7, 714.Google Scholar
Kuhl, D. E., Metter, E. J., Riege, W. H. & Phelps, M. E. (1982) Effects of human aging on patterns of local cerebral glucose utilization determined by the 18FJfluorodeoxyg1ucosc method. J. Cerebral Blood Flow Metab. 2, 163171.CrossRefGoogle ScholarPubMed
Lapp, J. E. (1981) Effects of glycemic alterations and noun imagery on the learning of paired associates. J. Learning Disabil. 14, 3538.CrossRefGoogle ScholarPubMed
Landin, K., Blennow, K., Wallin, A. & Gorrmuns, C. G. (1993) Low blood pressure and blood glucose levels in Alzheimers disease: evidence for a hypometabolic disorder? J. intern. Med. 233, 357363.CrossRefGoogle ScholarPubMed
Lee, M. K., Graham, S. N. & Gold, P. E. (1988) Memory enhancement with postraining intraventricular glucose injections in rats. Behav. Neurosci. 102, 591595.CrossRefGoogle Scholar
Lev-Ran, A. & Anderson, R. W. (1981) The diagnosis of postprandial hypoglycemia. Diabetes, 30, 996999.CrossRefGoogle Scholar
Lund-Anderson, H. (1979) Transport of glucose from blood to brain. Physiol. Rev. 59, 305352.CrossRefGoogle Scholar
Manning, C. A., Hall, J. L. & Gold, P. E. (1990) Glucose effects on memory and other neuropsychological tests in elderly humans. Psychol. Sci. 1, 307311.CrossRefGoogle Scholar
Manning, C. A., Parson, M. W. & Gold, P. E. (1992) Antergrade and retrograde enhancement of 24-h memory by glucose in elderly humans. Behav. neur. Biol. 58, 125130.CrossRefGoogle Scholar
Marks, V. & Rose, F. G. (1981) Hypoglycaemia, 2nd edn. Blackwell Scientific Publications, Oxford.Google Scholar
Messier, C. & White, N. M. (1987) Memory improvement by glucose, fructose, and two glucose analogs: a possible effect on peripheral glucose transport. Behav. Neur. Biol 48, 104127.CrossRefGoogle ScholarPubMed
Moser, L., Plum, H. & Buckmann, M. (1983) Der einflul von dextrose auf diet psychophysische leistungsfahigkeir des autofahrers. Aktuelle Ernaehrungsmedizin, 8, 247249.Google Scholar
Parks, R. W., Loewenstein, D. A., Dodrill, K. L., Barker, W. W., Yosiui, F., Chang, J. Y., Emran, A., Apicella, A., Sheramata, W. & Duara, R. (1988) Cerebral metabolic effects of a verbal fluency test: a PET scan study. J. din. exp. Neuropsychol 10, 565575.CrossRefGoogle ScholarPubMed
Parson, M. & Gold, P. E. (1992) Glucose enhancement of memory in elderly humans: an inverted-U dose-response curve. Neurobiol. Aging, 13, 401404.CrossRefGoogle Scholar
Reivich, M. & Alavi, A. (1983) Positron emission tomographic studies of local cerebral glucose metabolism in humans in physiological and pathological conditions. Adv. metabol. Disorders, 10, 135176.CrossRefGoogle Scholar
Riege, W. H., Metter, E. J., Kuhl, D. E. & Phelps, M. E. (1985) Brain glucose metabolism and memory functions: age decrease in factor scores. J. Gerontol. 4, 459467.CrossRefGoogle Scholar
Ryan, C. & Longstreet, C. (1984) Lower verbal IQ scores in adolescents with IDDM. Diabetes, 33, 525532.Google Scholar
Ryan, C., Vega, A., Drash, A. & Longstreet, C. (1984) Neuropsychological changes in adolescents with insulin-dependent diabetes. J. consult. clin. Psychol. 52, 335342.CrossRefGoogle ScholarPubMed
Siebert, G., Gessner, B. & Klasser, M. (1986) Energy supply of the central nervous System. Bibliotheca Nutritio Dieta, 38, 126.Google Scholar
Siesjo, B. K. (1978) Brain Energy Metabolism. Wiley, Chichester.Google ScholarPubMed
Snorgaard, O., Lassen, L. H., Rosenfalck, A. M. & Binder, C. (1991) Glycaemic thresholds for hypoglycaemic symptoms impairment of cognitive function and release of counter regulatory hormones in subjects with functional hypoglycaemia. J. intern. Med. 229, 343350.CrossRefGoogle ScholarPubMed
Stone, W. S., Rudd, R. J. & Gold, P. E. (1990) Glucose and physostigmine effects on morphine-induced and amphetamine-induced locomotor activity in mice. Behav. neur. Biol. 54, 146155.CrossRefGoogle ScholarPubMed
Stone, W. S., Wenk, G. L., Olton, D. S. & Gold, P. E. (1990) Poor blood glucose regulation predicts sleep and memory deficits in normal aged rats. J Gerontol. 45, Bl69173.CrossRefGoogle ScholarPubMed
Virkkunen, M. (1982) Reactive hypoglycemic tendency among habitually violent offenders. Neuropsvcho biology, 8, 3540.Google ScholarPubMed
Virkkunen, M. (1983) Insulin secretion during the glucose tolerance test in antisocial personality. Br. J. Psychiat. 142, 598604.CrossRefGoogle ScholarPubMed
Virkkunen, M. (1984) Reactive hypoglycemic tendency among arsonists. Ada psychiat. scand. 69, 445452.CrossRefGoogle ScholarPubMed
Virkkunen, M. (1986) Insulin secretion during the glucose tolerance test among habitually violent and impulsive offenders. Aggress. Behav. 12, 303310.3.0.CO;2-L>CrossRefGoogle Scholar
Virkkunen, M. & Huttunen, M. O. (1982) Evidence for abnormal glucose tolerance among violent offenders. Neuropsychobiol. 8, 3034.CrossRefGoogle ScholarPubMed
Weiss, V. (1986) From memory span and mental speed toward the quantum mechanics of intelligence. Personal. individ. Diffs, 7, 737749.CrossRefGoogle Scholar
Wenk, G. L. (1989) An hypothesis on the role of glucose in the mechanism of action of cognitive enhancers. Psychopharmocol. 99, 431438.CrossRefGoogle ScholarPubMed
Widom, B. & Simonson, D. C. (1990) Glycaemic control and neuropsychologic function during hypoglycaemia in patients with insulin-dependent diabetes mellitus. Ann. intern. Med. 112, 904912.CrossRefGoogle Scholar
61
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The supply of glucose to the brain and cognitive functioning
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

The supply of glucose to the brain and cognitive functioning
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

The supply of glucose to the brain and cognitive functioning
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *