Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-12T09:32:23.286Z Has data issue: false hasContentIssue false

Two results on dynamic extensions of deviation measures

Published online by Cambridge University Press:  16 July 2020

Mitja Stadje*
Affiliation:
Ulm University
*
*Postal address: Institute of Insurance Science and Institute of Financial Mathematics, Faculty of Mathematics and Economics, Ulm University, Helmholtzstrasse 20, 89081 Ulm, Germany. Email address: mitja.stadje@uni-ulm.de

Abstract

We give a dynamic extension result of the (static) notion of a deviation measure. We also study distribution-invariant deviation measures and show that the only dynamic deviation measure which is law invariant and recursive is the variance.

Type
Research Papers
Copyright
© Applied Probability Trust 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Artzner, Ph., Delbaen, F., Eber, J.-M. and Heath, D. (1999). Coherent measures of risk. Math. Finance 9, 203228.10.1111/1467-9965.00068CrossRefGoogle Scholar
Artzner, Ph., Delbaen, F., Eber, J.-M., Heath, D. and Ku, H. (2004). Coherent multiperiod risk adjusted values and Bellmans principle. Ann. Operat. Res. 152, 522.10.1007/s10479-006-0132-6CrossRefGoogle Scholar
Cheridito, P., Delbaen, F. and Kupper, M. (2006). Dynamic monetary risk measures for bounded discrete-time processes. Electron. J. Prob. 11, 57106.10.1214/EJP.v11-302CrossRefGoogle Scholar
Delbaen, F., Peng, S. and Rosazza Gianin, E. (2010). Representation of the penalty term of dynamic concave utilities. Finance Stoch. 14, 449472.10.1007/s00780-009-0119-7CrossRefGoogle Scholar
Elliott, R. J., Siu., T. K. and Cohen, S. N. (2015). Backward stochastic difference equations for dynamic convex risk measures on a binomial tree. J. Appl. Prob. 52, 771785.10.1239/jap/1445543845CrossRefGoogle Scholar
Föllmer, H. and Schied, A. (2002). Convex measures of risk and trading constraints. Finance Stoch. 6, 429447.10.1007/s007800200072CrossRefGoogle Scholar
Frittelli, M. and Rosazza Gianin, E. (2002). Putting order in risk measures. J. Bank. Finance 26, 14731486.10.1016/S0378-4266(02)00270-4CrossRefGoogle Scholar
Gerber, H. U. (1974). On iterative premium calculation principles. Sonderabdruck aus den Mitteilungen der Vereinigung schweizerischer Versicherungsmathematiker 74, 2.Google Scholar
Goovaerts, M. J.De Vylder, F. (1979). A note on iterative premium calculation principles. Astin Bull. 10, 325329.10.1017/S0515036100005961CrossRefGoogle Scholar
Kaluszka, M. and Krzeszowiec, M. (2013). On iterative premium calculation principles under Cumulative Prospect Theory. Insurance Math. Econom. 52, 435440.10.1016/j.insmatheco.2013.02.009CrossRefGoogle Scholar
Klöppel, S. and Schweizer, M. (2007). Dynamic indifference valuation via convex risk measures. Math. Finance 17, 599627.CrossRefGoogle Scholar
Kupper, M. and Schachermayer, W. (2009). Representation results for law invariant time consistent functions. Math. Finan. Econom. 2, 189210.10.1007/s11579-009-0019-9CrossRefGoogle Scholar
Pelsser, A. and Stadje, M. (2014). Time-consistent and market-consistent evaluation. Math. Finance 24, 2562.10.1111/mafi.12026CrossRefGoogle Scholar
Pistorius, M. and Stadje, M. (2017). On dynamic deviation measures and continuous-time portfolio optimization. Ann. Appl. Prob. 27, 33423384.CrossRefGoogle Scholar
Rockafellar, R. T., Uryasev, S. P. and Zabarankin, M. (2002). Deviation measures in risk analysis and optimization. Working Paper 2002-7, Department of Industrial & Systems Engineering, University of Florida.Google Scholar
Rockafellar, R. T., Uryasev, S. P. and Zabarankin, M. (2006). Master funds in portfolio analysis with general deviation measures. J. Banking 30, 743778.10.1016/j.jbankfin.2005.04.004CrossRefGoogle Scholar