Skip to main content Accessibility help

Local risk minimization and numéraire

  • F. Biagini (a1) and M. Pratelli (a2)


The ‘change of numéraire’ technique has been introduced by Geman, El Karoui and Rochet for pricing and hedging contingent claims in the case of complete markets. In this paper we study the ‘change of numéraire’ using the ‘locally risk-minimizing approach’, when the market is not complete. We prove that, if the stochastic process which represents the prices is continuous, the l.r.m. strategy is invariant by a change of numéraire (this result is false in the right-continuous case, as is shown by some counterexamples).

We also give an extension of Merton's formula to the case of stochastic volatility.


Corresponding author

Postal address: Dipartimento di Matematica, Università di Bologna, Piazza di Porta, San Donato-40127, Bologna, Italy.
∗∗ Postal address: Dipartimento di Matematica, Università di Pisa, via Buonarroti-56100, Pisa (PI), Italy. Email address:


Hide All
[1] Björk, T. (1997). Interest rate theory. In Financial Mathematics, ed. Runggaldier, W. J. (Lecture Notes in Math. 1656). Springer, New York.
[2] Delbaen, F., and Schachermayer, W. (1995). The no-arbitrage property under a change of numéraire. Stochastics and Stochastic Reports 53, 213226.
[3] Dellacherie, C., and Meyer, P. A. (1980). Probabilités et Potentiel B: Théorie des Martingales. Hermann, Paris.
[4] Föllmer, H., and Schweizer, M. (1991). Hedging of contingent claims under incomplete information. In Applied Stochastic Analysis, eds. Davis, M. H. A. and Elliot, R. J. Gordon and Breach, New York, pp. 389414.
[5] Föllmer, H., and Sondermann, D. (1986). Hedging of non-redundant contingent claims. In Contribution to Mathematical Economics, eds. Hildenbrand, W. and Mas-Colell, A. North-Holland, Amsterdam, pp. 205223.
[6] Geman, H., El Karoui, N., and Rochet, J. C. (1995). Changes of numéraire, changes of probability measure and option pricing. J. Appl. Prob. 32, 443458.
[7] Gouriéroux, L., Laurent, J. P., and Pham, H. (1998). Mean-variance hedging and numéraire. Math. Finance 8, 179200.
[8] Jacod, J. (1979). Calcul Stochastique et Problèmes des Martingales (Lecture Notes in Math. 714). Springer, New York.
[9] Musiela, M., and Rutkowski, M. (1997). Martingale Methods in Financial Modelling. Springer, New York.
[10] Protter, P. (1990). Stochastic Integration and Differential Equations: A New Approach. Springer, New York.
[11] Schweizer, M. (1991). Option hedging for semimartingales. Stoch. Proc. Appl. 37, 339363.
[12] Schweizer, M. (1994). Risk-minimizing hedging strategies under restricted information. Math. Finance 4, 327342.
[13] Zhang, X. (1994). Analyse numérique des options américaines dans un modèle de diffusion avec des sauts. Thèse de Doctorat, École Nationale des Ponts et des Chaussés.


MSC classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed