Skip to main content Accessibility help

Explicit criteria for several types of ergodicity of the embedded M/G/1 and GI/M/n queues

  • Zhenting Hou (a1) and Yuanyuan Liu (a1)


This paper investigates the rate of convergence to the probability distribution of the embedded M/G/1 and GI/M/n queues. We introduce several types of ergodicity including l-ergodicity, geometric ergodicity, uniformly polynomial ergodicity and strong ergodicity. The usual method to prove ergodicity of a Markov chain is to check the existence of a Foster–Lyapunov function or a drift condition, while here we analyse the generating function of the first return probability directly and obtain practical criteria. Moreover, the method can be extended to M/G/1- and GI/M/1-type Markov chains.


Corresponding author

Postal address: School of Mathematics, Central South University, Changsha, Hunan 410075, P. R. China. Email address:


Hide All
[1] Chen, M. F. (1992). From Markov Chains to Nonequilibrium Particle Systems. World Scientific, Singapore.10.1142/1389
[2] Foster, F. G. (1953). On the stochastic matrices associated with certain queuing processes. Ann. Math. Statist. 24, 355360.10.1214/aoms/1177728976
[3] Gail, H. R., Hantler, S. L., and Taylor, B. A. (1996). Spectral analysis of M/G/1 and G/M/1 type Markov chains. Adv. Appl. Prob. 28, 114165.10.2307/1427915
[4] Hou, Z. T., and Guo, Q. F. (1988). Homogeneous Denumerable Markov Processes. Springer, New York.
[5] Kemeny, J. G., Snell, J. L., and Knapp, A. W. (1976). Denumerable Markov Chains (Graduate Texts Math. 40), 2nd edn. Springer, New York.
[6] Kendall, D. G. (1951). Some problems in the theory of queues. J. R. Statist. Soc. B 13, 151185.
[7] Kendall, D. G. (1953). Stochastic processes occurring in the theory of queues and their analysis by the method of imbedded Markov chains. Ann. Math. Statist. 24, 338354.10.1214/aoms/1177728975
[8] Mao, Y. H. (2003). Algebraic Convergence for discrete-time ergodic Markov chains. Sci. China Ser. A 46, 621630.10.1360/02ys0202
[9] Markushevich, A. I. (1977). Theory of Functions of a Complex Variable, 2nd edn. Chelsea, New York.
[10] Meyn, S. P., and Tweedie, R. L. (1993). Markov Chains and Stochastic Stability. Springer, London.10.1007/978-1-4471-3267-7
[11] Neuts, M. F. (1981). Matrix-Geometric Solutions in Stochastic Models (Johns Hopkins Ser. Math. Sci. 2). Johns Hopkins University Press, Baltimore, MD.
[12] Neuts, M. F. (1989). Structured Stochastic Matrices of M/G/1 Type and Their Applications (Prob. Pure Appl. 5). Marcel Dekker, New York.
[13] Neuts, M. F., and Teugels, J. L. (1969). Exponential ergodicity of the M/G/1 queue. SIAM J. Appl. Math. 17, 921929.10.1137/0117081
[14] Tuominen, P., and Tweedie, R. L. (1979). Exponential ergodicity in Markovian queueing and dam models. J. Appl. Prob. 16, 867880.10.2307/3213152
[15] Tuominen, P., and Tweedie, R. L. (1994). Subgeometric rates of convergence of f-ergodic Markov chains. Adv. Appl. Prob. 26, 775798.10.2307/1427820
[16] Tweedie, R. L. (1983). Criteria for rates of convergence of Markov chains with application to queueing and storage theory. In Probability, Statistics and Analysis (London Math. Soc. Lecture Note Ser. 79), eds Kingman, J. F. C. and Reuter, G. E. H., Cambridge University Press, pp. 260276.10.1017/CBO9780511662430.016
[17] Widder, D. V. (1946). The Laplace Transform. Princeton University Press.
[18] Zhang, H. J., Lin, X., and Hou, Z. T. (2000). Polynomial uniform convergence for standard transition functions. Chinese Ann. Math. A 21, 351356.


MSC classification

Explicit criteria for several types of ergodicity of the embedded M/G/1 and GI/M/n queues

  • Zhenting Hou (a1) and Yuanyuan Liu (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed