Skip to main content Accessibility help
×
Home

The deterministic Kermack‒McKendrick model bounds the general stochastic epidemic

  • Robert R. Wilkinson (a1), Frank G. Ball (a2) and Kieran J. Sharkey (a1)

Abstract

We prove that, for Poisson transmission and recovery processes, the classic susceptible→infected→recovered (SIR) epidemic model of Kermack and McKendrick provides, for any given time t>0, a strict lower bound on the expected number of susceptibles and a strict upper bound on the expected number of recoveries in the general stochastic SIR epidemic. The proof is based on the recent message passing representation of SIR epidemics applied to a complete graph.

Copyright

Corresponding author

* Postal address: Department of Mathematical Sciences, The University of Liverpool, Liverpool L69 7ZL, UK.
*** Postal address: School of Mathematical Sciences, The University of Nottingham, University Park, Nottingham NG7 2RD, UK. Email address: frank.ball@nottingham.ac.uk
**** Email address: k.j.sharkey@liverpool.ac.uk

References

Hide All
Allen, L. J. S. (2008).An introduction to stochastic epidemic models.In Mathematical Epidemiology (Lecture Notes Math. 1945),Springer,Berlin,pp. 81130.
Andersson, H. and Britton, T. (2000).Stochastic Epidemic Models and Their Statistical Analysis(Lecture Notes Statist. 151).Springer,New York.
Bailey, N. T. J. (1975).The Mathematical Theory of Infectious Diseases and Its Applications,2nd edn.Hafner,New York.
Ball, F. (1990).A new look at Downton's carrier-borne epidemic model.In Stochastic Processes in Epidemic Theory (Lecture Notes Biomath. 86),Springer,Berlin,pp. 7185.
Ball, F. and Donnelly, P. (1987).Interparticle correlation in death processes with application to variability in compartmental models.Adv. Appl. Prob. 19,755766.
Barbour, A. D. and Reinert, G. (2013).Approximating the epidemic curve.Electron. J. Prob. 18,130.
Downton, F. (1968).The ultimate size of carrier-borne epidemics.Biometrika 55,277289.
Ethier, S. N. and Kurtz, T. G. (1986).Markov Processes: Characterization and Convergence.John Wiley,New York.
Karrer, B. and Newman, M. E. J. (2010).Message passing approach for general epidemic models.Phys. Rev. E 82,016101.
Kermack, W. O. and McKendrick, A. G. (1927).A contribution to the mathematical theory of epidemics.Proc. R. Soc. London A 115,700721.
McKendrick, A. G. (1914).Studies on the theory of continuous probabilities, with special reference to its bearing on natural phenomena of a progressive nature.Proc. London Math. Soc. 2 13,401416.
McKendrick, A. G. (1926)Applications of mathematics to medical problems.Proc. Edinburgh Math. Soc. 44,98130.
Simon, P. L. and Kiss, I. Z. (2013).From exact stochastic to mean-field ODE models: a new approach to prove convergence results.IMA J. Appl. Math. 78,945964.
Wilkinson, R. R. and Sharkey, K. J. (2014).Message passing and moment closure for susceptible-infected-recovered epidemics on finite networks.Phys. Rev. E 89,022808.

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed