Hostname: page-component-7479d7b7d-qlrfm Total loading time: 0 Render date: 2024-07-12T10:32:53.013Z Has data issue: false hasContentIssue false

Phase Transition and Law of Large Numbers for a Non-Symmetric One-Dimensional Random Walk with Self-Interactions

Published online by Cambridge University Press:  14 July 2016

Franck Vermet*
Affiliation:
Université de Bretagne Occidentale
*
Postal address: Université de Bretagne Occidentale, Faculté des Sciences et Techniques, Département de Mathématiques, 6, av. Victor Le Gorgeu, BP 809, 29285 Brest Cedex, France.

Abstract

We study a not necessarily symmetric random walk with interactions on ℤ, which is an extension of the one-dimensional discrete version of the sausage Wiener path measure. We prove the existence of a repulsion/attraction phase transition for the critical value λc ≡ −μ of the repulsion coefficient λ, where μ is a drift parameter. In the self-repellent case, we determine the escape speed, as a function of λ and μ, and we prove a law of large numbers for the end-point.

Type
Research Papers
Copyright
Copyright © Applied Probability Trust 1998 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Research partially supported by the European Contract CHRX-CT93-0411

References

References

Bolthausen, E. (1994). Localization of a two-dimensional random walk with an attractive path interaction. Ann. Prob. 22, 875918.CrossRefGoogle Scholar
Bolthausen, E., and Schmock, U. (1995). On self-attracting random walks. In Stochastic Analysis. ed. Cranston, M.C. and Pinsky, M.A. AMS, Providence, RI.Google Scholar
Brydges, D., and Slade, G. (1995). The diffusive phase of a model of self-interacting walks. Prob. Theory Rel. Fields 103, 285315.CrossRefGoogle Scholar
Donsker, M., and Varadhan, S. (1979). On the number of distinct sites visited by a random walk. Commun. Pure Appl. Math. 32, 721747.Google Scholar
Ellis, R. (1985). Entropy, Large Deviations, and Statistical Mechanics. Springer, New York.Google Scholar
Greven, A., and den Hollander, F. (1993). A variational characterisation of the speed of a one-dimensional self-repellent random walk. Ann. Appl. Prob. 3, 10671099.Google Scholar
Guillotin, N. (1995). Marches aléatoires à une dimension avec auto-intersection, d'après H. Zoladek. Université de Rennes I.Google Scholar
Jain, N., and Pruitt, W. (1972). The range of random walk. Sixth Berkeley Symp. Math. Stat. Prob. 3, 3150.Google Scholar
König, W. (1995). A central limit theorem for a one-dimensional polymer measure. Preprint.Google Scholar
Schmock, U. (1989). Convergence of the normalized one-dimensional Wiener sausage path measures to a mixture of Brownian taboo processes. Stoch. Stoch. Rep. 29, 171183.CrossRefGoogle Scholar
Vermet, F. (1996). Transition de phase et vitesse de fuite pour une mesure discrète de Edwards non symétrique sur ℤ. C. R. Acad. Sci. Paris 322, 567570.Google Scholar
Zoladek, H. (1987). One-dimensional random walk with self-interaction. J. Statist. Phys. 47, 543549.CrossRefGoogle Scholar

References

Eisele, T. and Lang, R. 1987. Asymptotics for the Weiner sausage with drift. Probab. Theory Related Fields 74, 125140.Google Scholar
POVEL, T. 1995. On weak convergence of conditional survival measure of one-dimensional Brownian motion with drift. Ann. Appl. Probab. 5, 222238.Google Scholar
SZNITMAN, A.S. 1995. Annealed Lyapounov exponents and large deviations in a Poissonian potential. Ann. Scient. Ec. Norm. Sup. 28, 345390.CrossRefGoogle Scholar