Skip to main content Accessibility help
×
Home

Bounds for discounted stochastic scheduling problems

Published online by Cambridge University Press:  14 July 2016


K. D. Glazebrook
Affiliation:
University of Newcastle upon Tyne

Abstract

Suppose that π is a policy for resource allocation in a stochastic environment and π ∗ is an optimal policy. Two existing procedures for policy evaluation are described and compared. Both of these evaluate π by means of upper bounds on R(π ∗) – R(π), the total reward lost when making resource allocations according to π rather than π∗. The bounds developed by these two methods are called Type 1 and Type 2. We demonstrate by example that neither of these procedures dominates the other in the sense of always yielding tighter bounds. A modification to Type 2 bounds is proposed resulting in an improved procedure which always dominates the Type 1 approach.


Type
Research Papers
Copyright
Copyright © Applied Probability Trust 1991 

Access options

Get access to the full version of this content by using one of the access options below.

Footnotes

During the course of this research the author was supported by the National Research Council as a Senior Research Associate at the Department of Operations Research, Naval Postgraduate School, Monterey, CA 93943–5000, USA.


References

[1] Bather, J. A. (1981) Randomised allocation of treatments in sequential experiments (with discussion). J. R. Statist. Soc. B43, 265292.Google Scholar
[2] Benkherouf, L., Glazebrook, K. D. and Owen, R. W. (1991) Gittins indices and oil exploration.Google Scholar
[3] Bergman, S. W. and Gittins, J. C. (1985) Statistical Methods for Pharmaceutical Research Planning. Marcel Dekker, New York.Google Scholar
[4] Bruno, J. and Hofri, M. (1975) On scheduling chains of jobs on one processor with limited preemption. SIAM J. Comput. 4, 478490.CrossRefGoogle Scholar
[5] Gittins, J. C. (1979) Bandit processes and dynamic allocation indices (with discussion). J. R. Statist. Soc. B41, 148177.Google Scholar
[6] Gittins, J. C. (1989) Multi-armed Bandit Allocation Indices. Wiley, New York.Google Scholar
[7] Gittins, J. C. and Glazebrook, K. D. (1977) On Bayesian models in stochastic scheduling. J. Appl. Prob. 14, 556565.CrossRefGoogle Scholar
[8] Glazebrook, K. D. (1978) On the optimal allocation of two or more treatments in a controlled clinical trial. Biometrika 65, 335340.CrossRefGoogle Scholar
[9] Glazebrook, K. D. (1982) On the evaluation of suboptimal strategies for families of alternative bandit processes. J. Appl. Prob. 19, 716722.CrossRefGoogle Scholar
[10] Glazebrook, K. D. (1983) Methods for the evaluation of permutations as strategies in stochastic scheduling. Management Sci. 29, 11421155.CrossRefGoogle Scholar
[11] Glazebrook, K. D. (1987) Sensitivity analysis for stochastic scheduling problems. Math. Operat. Res. 12, 205223.CrossRefGoogle Scholar
[12] Glazebrook, K. D. (1990) Procedures for the evaluation of strategies for resource allocation in a stochastic environment. J. Appl. Prob. 27, 215220.CrossRefGoogle Scholar
[13] Katehakis, M. N. and Veinott, A. F. (1987) The multi-armed bandit problem: decomposition and computation. Math. Operat. Res. 12, 262268.CrossRefGoogle Scholar
[14] Ross, S. M. (1970) Applied Probability Models with Optimization Applications. Holden-Day, San Francisco.Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 11 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 5th December 2020. This data will be updated every 24 hours.

Hostname: page-component-b4dcdd7-ppfm2 Total loading time: 0.337 Render date: 2020-12-05T23:24:18.336Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Sat Dec 05 2020 23:01:06 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": false, "languageSwitch": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Bounds for discounted stochastic scheduling problems
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Bounds for discounted stochastic scheduling problems
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Bounds for discounted stochastic scheduling problems
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *