Skip to main content Accessibility help

Effect of Calsporin® (Bacillus subtilis C-3102) addition to the diet on faecal quality and nutrient digestibility in healthy adult dogs

  • S. Schauf (a1), N. Nakamura (a2) and C. Castrillo (a1)


This study evaluated the effect of Bacillus subtilis C-3102 (Calsporin®) addition to the diet on faecal characteristics and nutrient digestibility in healthy adult dogs. Sixteen Beagles received either a low-energy control diet (CON; 3.35 Mcal metabolisable energy (ME)/kg with 21.8, 27.9, and 50.3% ME as protein, fat, and nitrogen-free extractives (NFE), respectively) or the same diet supplemented with Bacillus subtilis at 1 × 109 CFU/kg diet as probiotic (PRO) for four weeks in a parallel design (eight dogs per diet). In the prior two weeks, all dogs received a high-energy diet (Advance Medium Adult, Affinity Petcare®, 3.81 Mcal ME/kg ME with 24.8, 41.2, and 34% ME protein, fat, and NFE, respectively). Faecal consistency, dry matter (DM), pH, and NH3 were analysed on fresh samples collected at the start and weekly throughout the study. Additional samples were collected for the determination of lactate and short-chain fatty acids (SCFA) on days 0 and 21. In week four, a five–day total faecal collection was conducted in six dogs from each diet for the determination of nutrient apparent digestibility. Dogs fed the PRO diet had more firm faeces (P = 0.011) than control dogs and a higher faecal DM content in the first two weeks (P < 0.05). Feeding the PRO diet resulted in a decline in NH3 over four weeks (P = 0.05) and in faecal pH in the first two weeks (P < 0.05) alongside an increase in SCFA content (P = 0.044), mainly acetate (P = 0.024). Faecal lactate did not differ between diets (P > 0.10). Dogs fed the PRO diet showed a higher apparent digestibility of fat (P = 0.031) and NFE (P = 0.038) compared to control dogs. Dog food supplementation with Calsporin® at 1 × 109 CFU/kg improved faecal quality, enhanced fat and carbohydrate digestibility, and contributed to the gut health of dogs by reducing gut ammonia and increasing SCFA content.


Corresponding author

Corresponding author:


Hide All
AAFCO, Association of American Feed Control Officials (2011) AAFCO Official Publication (Oxford, AAFCO).
AOAC, Association of Official Analytical Chemists (2005) Official Methods of Analysis, 18th Ed (Gaithersburg, Md, AOAC International).
Barker, S. B. and Summerson, W. H. (1941) The colorimetric determination of lactic acid in biological material. Journal of Biological Chemistry, 138: 535554.
Benjamin, S., Smitha, R., Jisha, V., Pradeep, S., Sajith, S., Sreedevi, S., Priji, P., Unni, K. and Josh, M. (2013) A monograph on amylases from Bacillus spp. Advances in Bioscience and Biotechnology, 4, 227241.
Biourge, V., Vallet, C., Levesque, A., Sergheraert, R., Chevalier, S. and Roberton, J. L. (1998) The use of probiotics in the diet of dogs. Journal of Nutrition, 128: 2730S2732S.
Blake, M. R., Raker, J. M. and Whelan, K. (2016) Validity and reliability of the Bristol Stool Form Scale in healthy adults and patients with diarrhoea-predominant irritable bowel syndrome. Alimentary Pharmacology and Therapeutics, 44: 693703.
Bleiberg, B., Beers, T.R., Persson, M. and Miles, J.M. (1992) Systemic and regional acetate kinetics in dogs. The American Journal of Physiology, 262: E197202.
Bosch, G., Verbrugghe, A., Hesta, M., Holst, J. J., van der Poel, A. F., Janssens, G. P. and Hendriks, W. H. (2009) The effects of dietary fibre type on satiety-related hormones and voluntary food intake in dogs. British Journal of Nutrition, 102: 318325.
British Standards Institute (2009) Animal Feeding Stuffs. Isolation and Enumeration of Presumptive Bacillus spp. BS EN 15784 (London, British Standards Institution).
Chaney, A. L., and Marbach, E. P. (1962) Modified reagents for determination of urea and ammonia. Clinical Chemistry, 8: 130132.
De Vuyst, L. and Vandamme, E.J. (1994) Antimicrobial potential of lactic acid bacteria, in: De Vuyst, L. and Vandamme, E.J. (Eds) Bacteriocins of lactic acid bacteria, pp. 91142 (London, Blackie Academic and Professional).
European Commission (2018) European Union Register of Feed Additives pursuant to Regulation (EC) No. 1831/2003. Health and Food Safety Directorate-General, Brussels, Belgium.
Félix, A. P., Netto, M. V. T., Murakami, F. Y., Brito, C. B. M., Oliveira, S. G. and Maiorka, A. (2010) Digestibility and fecal characteristics of dogs fed with Bacillus subtilis in diet. Ciência Rural, 40: 21692173.
Fritts, C., Kersey, J.H., Motl, M.A., Kroger, E.C., Yan, F., Si, J., Jiang, Q., Campos, M.M., Waldroup, A.L. and Waldroup, P.W. (2000) Bacillus subtilis C-3102 (Calsporin) improves live performance and microbiological status of broiler chickens. Journal of Applied Poultry Research, 9: 149155.
German, A. J., Holden, S. L., Bissot, T., Morris, P. J. and Biourge, V. (2009) Use of starting condition score to estimate changes in body weight and composition during weight loss in obese dogs. Research in Veterinay Science, 87: 249254.
González-Ortiz, G., Castillejos, L., Mallo, J. J., Calvo-Torras, M.A. and Baucells, M.D. (2013) Effects of dietary supplementation of Bacillus amyloliquefaciens CECT 5940 and Enterococcus faecium CECT 4515 in adult healthy dogs. Archives of Animal Nutrition, 67: 406415.
Guyard-Nicodème, M., Keita, A., Quesne, S., Amelot, M., Poezevara, T., Le Berre, B., Sánchez, J., Vesseur, P., Martín, Á., Medel, P. and Chemaly, M. (2016) Efficacy of feed additives against Campylobacter in live broilers during the entire rearing period. Poultry Science, 95: 298305.
Hatanaka, M., Nakamura, Y., Maathuis, A. J.,Venema, K., Murota, I. and Yamamoto, N. (2012) Influence of Bacillus subtilis C-3102 on microbiota in a dynamic in vitro model of the gastrointestinal tract simulating human conditions. Beneficial microbes, 3: 229236
Hijova, E., and Chmelarova, A. (2007). Short chain fatty acids and colonic health. Bratislavské lekárske listy, 108 (8): 354358.
Hosoi, T., Ametani, A., Kiuchi, K. and Kaminogawa, S. (2000) Improved growth and viability of lactobacilli in the presence of Bacillus subtilis (natto), catalase, or subtilisin. Canadian Journal of Microbiology, 46: 892897.
Jeong, J. S. and Kim, I. H. (2014) Effect of Bacillus subtilis C-3102 spores as a probiotic feed supplement on growth performance, noxious gas emission, and intestinal microflora in broilers. Poultry Science, 93: 30973103.
Kampf, D. (2012) Mode of action of Bacillus subtilis and efficiency in piglet feeding. Feed Compounder, 3637.
Kritas, S., Marubashi, T., Filioussis, G., Petridou, E., Christodoulopoulos, G., Burriel, A.R., Tzivara, A., Theodoridis, A. and Pískoriková, M. (2015) Reproductive performance of sows was improved by administration of a sporing bacillary probiotic (C-3102). Journal of Animal Science, 93: 405413.
Laflamme, D. (1997) Development and validation of a body condition score system for dogs. Canine Practice, 22: 1015.
Lin, H. and Visek, W. J. (1991) Colon mucosal cell damage by ammonia in rats. The Journal of nutrition, 121: 887893.
Markowiak, P. and Slizewska, K. (2018). The role of probiotics, prebiotics and synbiotics in animal nutrition. Gut Pathogens, 10: 21.
Marubashi, T., Gracia, M. I., Vilà, B., Bontempo, V., Kritas, S. K. and Piskoríková, M. (2012) The efficacy of the probiotic feed additive Calsporin® (Bacillus subtilis C-3102) in weaned piglets: combined analysis of four different studies. Journal of Applied Animal Nutrition, 1 (e2): 15.
Maruta, K., Miyazaki, H., Masuda, S., Takahashi, M., Marubashi, T., Tadano, Y. and Takahashi, H. (1996) Exclusion of intestinal pathogens by continuous feeding with Bacillus subtilis C-3102 and its influence on the intestinal microflora in broilers. Animal Science and Technology (Japan), 67: 273280.
Morrison, D. J. and Preston, T. (2016) Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut microbes, 7: 189200.
Mountzouris, K. C., Tsitrsikos, P., Palamidi, I., Arvaniti, A., Mohnl, M., Schatzmayr, G. and Fegeros, K. (2010) Effects of probiotic inclusion levels in broiler nutrition on growth performance, nutrient digestibility, plasma immunoglobulins, and cecal microflora composition. Poultry Science, 89: 5867.
NRC, National Research Council (2006) Nutrient Requirements of Dogs and Cats (Washington, D.C., The National Academies Press).
Paap, P., van der Laak, J., Smit, J., Nakamura, N. and Beynen, A. (2016) Administration of Bacillus subtilis C-3102 (Calsporin®) may improve feces consistency in dogs with chronic diarrhoea. Research Opinions in Animal and Veterinary Sciences, 6: 256260.
Sauter, S. N., Benyacoub, J., Allenspach, K., Gaschen, F., Ontsouka, E., Reuteler, G., Cavadini, C., Knorr, R. and Blum, J. W. (2006) Effects of probiotic bacteria in dogs with food responsive diarrhoea treated with an elimination diet. Journal of Animal Physiology and Animal Nutrition, 90: 269277.
Scheppach, W. (1994) Effects of short chain fatty acids on gut morphology and function. Gut, 35: S3538.
Semova, I., Carten, J.D., Stombaugh, J., Mackey, L.C., Knight, R., Farber, S.A. and Rawls, J. F. (2012) Microbiota regulate intestinal absorption and metabolism of fatty acids in the zebrafish. Cell host and microbe, 12: 277288.
Swanson, K. S., Grieshop, C. M., Flickinger, E. A., Bauer, L. L., Chow, J., Wolf, B. W., Garleb, K. A. and Fahey, G. C. Jr. (2002) Fructooligosaccharides and Lactobacillus acidophilus modify gut microbial populations, total tract nutrient digestibilities and fecal protein catabolite concentrations in healthy adult dogs. Journal of Nutrition, 132: 37213731.
Williams, B. A., Verstegen, M.W. and Tamminga, S. (2001) Fermentation in the large intestine of single-stomached animals and its relationship to animal health. Nutrition research reviews, 14: 207228.
Yang, F., Hou, C., Zeng, X. and Qiao, S. (2015) The use of lactic acid bacteria as a probiotic in swine diets. Pathogens, 4: 3445.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Applied Animal Nutrition
  • ISSN: -
  • EISSN: 2049-257X
  • URL: /core/journals/journal-of-applied-animal-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Type Description Title
Supplementary materials

Schauf et al. supplementary material
Schauf et al. supplementary material 1

 Word (17 KB)
17 KB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed