Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-22T21:40:01.854Z Has data issue: false hasContentIssue false

Target pioneering and early morphology of the murine chorda tympani

Published online by Cambridge University Press:  01 January 1998

LISA SCOTT
Affiliation:
Department of Biomedical Science, University of Sheffield, UK
MARTIN E. ATKINSON
Affiliation:
Department of Biomedical Science, University of Sheffield, UK
Get access

Abstract

Many studies demonstrate that differentiation of certain sensory receptors during development is induced by their nerve supply. Thus the navigational accuracy of pioneering fibres to their targets is crucial to this process. The special gustatory elements of the facial and glossopharyngeal nerves are used extensively as model systems in this field. We examined the chorda tympani, the gustatory component of the facial nerve, to determine the precise time course of its development in mice. The transganglionic fluorescent tracer DiI was injected into the anterior aspect of the mandibular arch of fixed embryos aged between 30 and 50 somites (E10–E12). It was allowed to diffuse retrogradely via the geniculate ganglion to the brainstem for 4 wk, before the distribution of DiI was determined using confocal laser scanning microscopy. Geniculate ganglion cells were first labelled at the 34 somite stage (E10). Pioneering chorda tympani fibres that arise from these cells passed peripherally and followed an oblique course as they grew towards the mandibular arch. At the 36 somite stage (E10.5), the peripheral component followed an intricate postspiracular course and passed anteriorly to arch over the primitive tympanic cavity, en route to the lingual epithelium. From the 36 to 50 somite stages (E10.5–E12), it consistently traced in the fashion of a ‘U’ bend. The central fascicle also traced at the 36 somite stage (E10.5) and just made contact with the brainstem. At the 40 somite stage (E11), the central fibres clearly chose a route of descent into the spinal trigeminal tract and branched into the solitary tract. Pioneering chorda tympani fibres contact the lingual epithelium when the target is primordial. The lingual epithelium may be a source of a neurotropic factor that attracts peripheral chorda tympani fibres to the sites of putative papillae. However, the chorda tympani is probably not a vital influence on the subsequent differentiation of gustatory papillae, since the papillae are elaborated 5 d later at E15 in murine embryos. The early morphology of the nerve is true to the amniote vertebrate phenotype.

Type
Research Article
Copyright
© Anatomical Society of Great Britain and Ireland 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)