Hostname: page-component-7479d7b7d-c9gpj Total loading time: 0 Render date: 2024-07-11T04:04:08.021Z Has data issue: false hasContentIssue false

Voluntary intake and gastric digestion of two hays by llamas and sheep: influence of concentrate supplementation

Published online by Cambridge University Press:  27 March 2009

S. Lemosquet
Affiliation:
INRA – Unité Ingestion, Station de Recherches sur la Nutrition des Herbivores, CRZV de Theix, 63122 St-Genès-Champanelle, France
C. Dardillat
Affiliation:
INRA – Unité Ingestion, Station de Recherches sur la Nutrition des Herbivores, CRZV de Theix, 63122 St-Genès-Champanelle, France
M. Jailler
Affiliation:
INRA – Unité Ingestion, Station de Recherches sur la Nutrition des Herbivores, CRZV de Theix, 63122 St-Genès-Champanelle, France
J. P. Dulphy
Affiliation:
INRA – Unité Ingestion, Station de Recherches sur la Nutrition des Herbivores, CRZV de Theix, 63122 St-Genès-Champanelle, France

Summary

The efficiency with which llamas and sheep digest various roughages was compared in France in 1993. Six llamas (three of which were rumen-cannulated) and six rumen-cannulated sheep were simultaneously given three different diets: (i) a grass hay low in N content (HLN), (ii) the same hay with barley, representing 25% of the total dry matter (HLN+B) and (iii) a cocksfoot grass hay, rich i n nitrogen (HRN). Daily forage dry matter intake was slightly, but not significantly, lower in llamas (55·9 g/kg W0·75 ν. 60·3 g/kg W0·75 in sheep). Intake behaviour was similar for the two species except that the number of rumination periods was lower with llamas (P < 0·05). With all diets, the digestibility of both organic matter and cell walls (estimated from neutral detergent fibre) was higher in llamas (Animal Nutrition, 9700 Angra do Heroismo, Azores, Portugal 5+6 and +6+5 units respectively, P < 0·001). The higher digestibility in llamas may be related to the slightly lower level of intake and to the lower dry matter turnover rate in the forestomachs compared to sheep (3·9%/h ν. 5·3%/h, P < 0·01). However, in sacco degradation of both hays were higher in llamas' forestomachs after 24 h of incubation (+6+5%, P < 0·01) and 48 h (+4+3%, P < 0·05) than in sheep. The high microbial efficiency of the llamas can be ascribed to the physical and chemical characteristics of their forestomach contents, which had a higher liquid turnover rate (+1+4%/h, P < 0·05), a lower volatile fatty acid concentration (P < 0·01), a higher and more constant pH (P < 0·01) than in sheep and a greater buffering capacity when pH was close to neutral. These results suggest the greater ability of llamas to control the physicochemical conditions of their forestomach contents to digest cell walls efficiently and to minimize the negative effects of concentrate supplementation.

Type
Animals
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baumont, R., Dulphy, J. P. & Andrieu, J. P. (1988). Comportement alimentaire et état de répletion du réticulorumen chez le mouton nourri à volonté de foin de prairie ou de luzerne, avec accès continu ou limité: incidences sur le contrôle physique de l'ingestion. Reproduction, Nutrition, Développement 28, 573588.Google Scholar
Berge, P. & Dulphy, J. P. (1991). Etude des interactions entre fourrage et aliment concentré chez le mouton. II. Facteurs de variation de la digestibilité. Annales de Zootechnie 40, 227246.Google Scholar
Brugère, H. (1984). Pouvoir tampon et évaluation titrimétique du jus de rumen. Recueil de Médecine Vétérinaire 160, 585593.Google Scholar
Cordesse, R., Inesta, M. & Gaubert, J. L. (1992). Intake and digestibility of four forages by llamas and sheep. Annales de Zootechnie 41, 70.Google Scholar
Dardillat, C. & Baumont, R. (1992). Physical characteristics of reticular content in the bovine and consequences on reticular outflow. Reproduction, Nutrition, Development 32, 2136.CrossRefGoogle ScholarPubMed
Dardillat, C., Baumont, R. & Jouany, J. P. (1994). Contenus gastriques du lama et du mouton. Annales de Zootechnie 43, 279 (Abstract).CrossRefGoogle Scholar
Demarquilly, C. & Chenost, M. (1969). Etude de la digestion des fourrages dans le rumen par la méthode des sachets de nylon; liaisons avec la valeur alimentaire. Annales de Zootechnie 18, 419436.CrossRefGoogle Scholar
Dulphy, J. P., Dardillat, C., Jailler, M. & Jouany, J. P. (1994 a). Comparison of the intake and digestibility of different diets in llamas and sheep: a preliminary study. Annales de Zootechnie 43, 379387.Google Scholar
Dulphy, J. P., Jouany, J. P., Martin-Rosset, W. & Theriez, M. (1994 b). Aptitudes comparées de différentes espèces d'herbivores domestiques à ingérer à l'auge et à digérer les fourrages. Annales de Zootechnie 43, 1132.Google Scholar
Dumont, B., Meuret, M. & Prud'hon, M. (1995). Direct observation of biting for studying grazing behavior of goats and llamas on garrigue rangelands. Small Ruminant Research 16, 2735.Google Scholar
Engelhardt, W. V., Lechner-Doll, M. & Heller, R. (1984). The digestive physiology of camelids. In The Camelid. An All-purpose Animal, Vol. I (Ed. Cockrill, W. R.), pp. 323344. Uppsala: Scandinavian Institute of African Studies.Google Scholar
Engelhardt, W. v., Lechner-Doll, M., Heller, R., Schwartz, H. J., Rutagwenda, T. & Schultka, W. (1986). Physiology of the forestomachs in camelids with particular reference to adaptation to extreme dietary conditions. A comparative approach. Zoologische Beitrage 30, 115.Google Scholar
Farid, M. F. A., Shawket, S. M. & Abdel-Rahman, M. H. A. (1984). The nutrition of camels and sheep under stress. In The Camelid. An All-purpose Animal, Vol. I (Ed. Cockrill, W. R.), pp. 293322. Uppsala: Scandinavian Institute of African Studies.Google Scholar
Faichney, G. J. (1975). The use of markers to partition digestion within gastrointestinal tract of ruminants. In Digestion and Metabolism in the Ruminant (Eds McDonald, I. W. & Warner, A. C. I.), pp. 277291. Armidale: University of New England.Google Scholar
Giger, S. & Pochet, S. (1987). Méthodes d'estimation des constituants pariétaux dans les aliments destinés aux ruminants. Bulletin Technique du Centre de Recherches Zootechniques et Vétérinaires de Theix 70, 4960.Google Scholar
Goering, H. K. & Van Soest, P. J. (1970). Forage fiber analysis. Agricultural Handbook 379, 120.Google Scholar
Heller, R., Lechner-Doll, M. & Engelhardt, W. v. (1986). Forestomachs fluid volume and retention of fluid and particles in the gastrointestinal tract of the camel (Camelus dromedarius). Journal of Veterinary Medicine, A33, 396399.Google Scholar
Hintz, H. F., Schryver, H. F. & Halbert, M. (1973). A note on the comparison of digestion by new world camels, sheep and ponies. Animal Production 16, 303305.Google Scholar
Jarrige, R. (Ed.) (1989). Ruminant Nutrition: Recommended Allowances and Feed Tables. London: John Libbey Eurotext.Google Scholar
Jouany, J. P. (1982). Volatile fatty acids and alcohol determination in digesta contents, silage juices, bacterial cultures and anaerobic fermentor contents. Sciences des Aliments 2, 131144.Google Scholar
Jouany, J. P., Kayouli, C. & Dardillat, C. (1994). Microbial cell wall digestion in camelids. Options Méditerranéennes série B 13, 3342.Google Scholar
Kaske, M., Osman, T., Lechner-Doll, M., Larsson, M. & Engelhardt, W. V. (1989). Circadian changes of forestomachs motility and rumination in camels. Asian-Australasian Journal of Animal Sciences 2, 301302.CrossRefGoogle Scholar
Kayouli, C, Jouany, J. P. & Ben Amor, J. (1991). Comparison of microbìal activity in the forestomachs of the dromedary and the sheep measured in vitro and in sacco on mediterranean roughages. Animal Feed Science and Technology 33, 237245.Google Scholar
Kayouli, C, Dardillat, C. & Jouany, J. P. (1993 a). Comparative study of the muralytic activity of rumen microbes measured in situ in llamas and sheep. Annales de Zootechnie 42, 184 (Abstract).CrossRefGoogle Scholar
Kayouli, C., Jouany, J. P., Demeyer, D. I., Ali-Ali, , Taoueb, H. & Dardillat, C. (1993 b). Comparative studies on the degradation and mean retention time of solid and liquid phases in the forestomachs of dromedaries and sheep fed on low-quality roughages from Tunisia. Animal Feed Science and Technology 40, 343355.Google Scholar
Lechner-Doll, M., Rutagwenda, T., Schwartz, H. J., Schultka, W. & Engelhardt, W. v. (1990). Seasonal changes of ingesta mean retention time and forestomach fluid volume in indigenous camels, cattle, sheep and goats grazing a thornbush savannah pasture in Kenya. Journal of Agricultural Science, Cambridge 115, 409420.Google Scholar
Mudgal, V. D., Dixon, R. M, Kennedy, P. M. & Milligan, L. P. (1982). Effect of two intake levels on retention times of liquid, particle and microbial markers in the rumen of sheep. Journal of Animal Science 54, 10511055.Google Scholar
Rübsamen, K. & Engelhardt, W. v. (1975). Water metabolism in the llama. Comparative Biochemistry and Physiology 52A, 595598.Google Scholar
Rübsamen, K. & Engelhardt, W. v. (1978). Bicarbonate secretion and solute absorption in forestomach of the llama. American Journal of Physiology 235, E1E6.Google Scholar
Rübsamen, K. & Engelhardt, W. v. (1979). Morphological and functional peculiarities of the llama forestomach. Annales de Recherches Vétérinaires 10, 473475.Google ScholarPubMed
Ruckebusch, Y. (1963). Recherches sur la règulation centrale du comportement limentaire chez les ruminants. Thèse, Université de Lyon.Google Scholar
Sas (1985). Statistical Guide for Personal Computers, Version 6. Cary, NC: Statistical Analysis System Institute Inc.Google Scholar
Thornton, R. F. & Minson, D. J. (1972). The relationship between voluntary intake and mean apparent retention time in the rumen. Australian Journal of Agricultural Research 23, 871877.Google Scholar
Udén, P., Colucci, P. E. & Van Soest, P. J. (1980). Investigation of chromium, cerium and cobalt as markers in digesta. Rate of passage studies. Journal of the Science of Food and Agriculture 31, 625632.Google Scholar
Vallenas, A. & Stevens, C. E. (1971). Volatile fatty acid concentrations and pH of llama and guanaco forestomach digesta. Cornell Veterinarian 61, 239252.Google Scholar
Van Eenaeme, C., Bienfait, J. M., Lambot, O. & Pondant, A.. (1969). Determination automatique de l'ammoniaque dans le liquide du rumen par la méthode de Berthelot adaptée à l'auto-analyzer. Annales de Médecine Vétérinaire 7, 419425.Google Scholar
Van Soest, P. J. (1982). Limitation of ruminants. In Nutrition Ecology of the Ruminant: Ruminant metabolism, nutritional strategies, the cellulolytic fermentation and the chemistry of forages and plant fibers (Ed. Soest, P. J. Van), pp. 324344. London: O & B Books, Corvallis, OR.Google Scholar
Warmington, B. G., Wilson, G. F. & Barry, T. N. (1989). Voluntary intake and digestion of ryegrass straw by llama × guanaco crossbreds and sheep. Journal of Agricultural Science, Cambridge 113, 8791.Google Scholar