Skip to main content Accessibility help
×
Home

Variation in ovine KRTAP8-1 is associated with variation in wool fibre staple strength and curvature

  • H. Gong (a1) (a2), H. Zhou (a1) (a2), W. Li (a2) (a3), J. Wang (a1) (a3), S. Li (a1) (a3), Y. Luo (a1) (a3) and J. G. H. Hickford (a1) (a2)...

Abstract

KRTAP8-1 was the initial high-glycine-tyrosine keratin-associated protein gene recognized in sheep, but little is known about the functional influence of this gene. The current study used polymerase chain reaction-single stranded conformational polymorphism analysis to genotype KRTAP8-1 in 391 Southdown × Merino-cross sheep from six sire-lines. Five previously described variants (named A to E) of KRTAP8-1 were identified with frequencies of 67.0, 14.2, 7.0, 10.7 and 1.0%, respectively. Of the four variants (A, B, C and D) that occurred at a frequency greater than 5%, the presence of C was found to be associated with a reduction in mean fibre curvature (MFC) and the presence of D was associated with an increase in mean staple strength (MSS), whereas the presence of A had a trend of association with reduced MSS. Associations were not identified with other wool traits. These results suggest that variation in KRTAP8-1 affects MSS and MFC, and that KRTAP8-1 has the potential to be used as a genetic marker for improving these traits.

Copyright

Corresponding author

Author for correspondence: Y. Luo, E-mail: luoyz@gsau.edu.cn and J. G. H. Hickford, E-mail: jon.hickford@lincoln.ac.nz

References

Hide All
Bai, L, Gong, H, Zhou, H, Tao, J and Hickford, JGH (2018) A nucleotide substitution in the ovine KAP 20-2 gene leads to a premature stop codon that affects wool fibre curvature. Animal Genetics 49, 357358.
Bai, L, Wang, J, Zhou, H, Gong, H, Tao, J and Hickford, JGH (2019) Identification of ovine KRTAP28-1 and its association with wool fibre diameter. Animals 9, article no. 142. doi: 10.3390/ani9040142.
Byun, SO, Fang, Q, Zhou, H and Hickford, JGH (2009) An effective method for silver-staining DNA in large numbers of polyacrylamide gels. Analytical Biochemistry 385, 174175.
Chen, HY, Zeng, XC, Hui, WQ, Zhao, ZS and Jia, B (2011) Developmental expression patterns and association analysis of sheep KAP8.1 and KAP1.3 genes in Chinese Merino sheep. Indian Journal of Animal Sciences 81, 391396.
Duan, J, Wainwright, MS, Comeron, JM, Saitou, N, Sanders, AR, Gelernter, J and Gejman, PV (2003) Synonymous mutations in the human dopamine receptor D2 (DRD2) affect mRNA stability and synthesis of the receptor. Human Molecular Genetics 12, 205216.
Endrizzi, BJ, Huang, G, Kiser, PF and Stewart, RJ (2006) Specific covalent immobilization of proteins through dityrosine cross-links. Langmuir 22, 1130511310.
Gillespie, JM (1990) The proteins of hair and other hard α-keratins. In Goldman, RD and Steinert, PM (eds), Cellular and Molecular Biology of Intermediate Filaments. Boston, MA, USA: Springer, pp. 95128.
Gong, H, Zhou, H, Plowman, JE, Dyer, JM and Hickford, JGH (2012) Search for variation in the ovine KAP7-1 and KAP8-1 genes using polymerase chain reaction – single-stranded conformational polymorphism screening. DNA and Cell Biology 31, 367370.
Gong, H, Zhou, H, Forrest, RH, Li, S, Wang, J, Dyer, JM, Luo, Y and Hickford, JGH (2016) Wool keratin-associated protein genes in sheep – a review. Genes 7, article no. 24. doi: 10.3390/genes7060024.
Gong, H, Zhou, H, Bai, L, Li, W, Li, S, Wang, J, Luo, Y and Hickford, JGH (2019) Associations between variation in the ovine high glycine-tyrosine keratin-associated protein gene KRTAP20-1 and wool traits. Journal of Animal Science 97, 587595.
Harland, DP, Vernon, JA, Woods, JL, Nagase, S, Itou, T, Koike, K, Scobie, DA, Grosvenor, AJ, Dyer, JM and Clerens, S (2018) Intrinsic curvature in wool fibres is determined by the relative length of orthocortical and paracortical cells. Journal of Experimental Biology 221, article no. jeb172312. doi: 10.1242/jeb.172312.
Kuczek, ES and Rogers, GE (1987) Sheep wool (glycine + tyrosine)-rich keratin genes. European Journal of Biochemistry 166, 7985.
Li, SW, Ouyang, HS, Rogers, GE and Bawden, CS (2009) Characterization of the structural and molecular defects in fibres and follicles of the merino felting lustre mutant. Experimental Dermatology 18, 134142.
Li, S, Zhou, H, Gong, H, Zhao, F, Hu, J, Luo, Y and Hickford, JGH (2017 a) Identification of the ovine keratin-associated protein 26-1 gene and its association with variation in wool traits. Genes 8, article no. E225. doi: 10.3390/genes8090225.
Li, S, Zhou, H, Gong, H, Zhao, F, Wang, J, Liu, X, Luo, Y and Hickford, JGH (2017 b) Identification of the ovine keratin-associated protein 22-1 (KAP22-1) gene and its effect on wool traits. Genes 8, article no. 27. doi: 10.3390/genes8010027.
Li, S, Zhou, H, Gong, H, Zhao, F, Wang, J, Luo, Y and Hickford, JGH (2017 c) Variation in the ovine KAP6-3 gene (KRTAP6-3) is associated with variation in mean fibre diameter-associated wool traits. Genes 8, article no. 204. doi: 10.3390/genes8080204.
Li, W, Gong, H, Zhou, H, Wang, J, Liu, X, Li, S, Luo, Y and Hickford, JGH (2018) Variation in the ovine keratin-associated protein 15-1 gene affects wool yield. Journal of Agricultural Science, Cambridge 156, 922928.
Li, W, Gong, H, Zhou, H, Wang, J, Li, S, Liu, X, Luo, Y and Hickford, JGH (2019) Variation in KRTAP6-1 affects wool fibre diameter in New Zealand Romney ewes. Archives in Animal Breeding 62, 509515.
McGregor, B and Naebe, M (2016) Fabric handle properties of superfine wool fabrics with different fibre curvature, cashmere content and knitting tightness. Journal of The Textile Institute 107, 562577.
Powell, BC and Rogers, GE (1990) Hard keratin IF and associated proteins. In Goldman, RD and Steinert, PM (eds), Cellular and Molecular Biology of Intermediate Filaments. Boston, MA, USA: Springer, pp. 267300.
Rogers, GE (2006) Biology of the wool follicle: an excursion into a unique tissue interaction system waiting to be re-discovered. Experimental Dermatology 15, 931949.
Rogers, GR, Hickford, JGH and Bickerstaffe, R (1994) A potential QTL for wool strength located on ovine chromosome 11. In Proceedings of the World Congress on Genetics Applied to Livestock Production, Volume 21. Gene Mapping; Polymorphisms; Disease Genetic Markers; Marker Assisted Selection; Gene Expression; Transgenes; Non-Convention. Guelph, Ontario, Canada: WCGALP, pp. 291294.
Tao, J, Zhou, H, Gong, H, Yang, Z, Ma, Q, Cheng, L, Ding, W, Li, Y and Hickford, JGH (2017 a) Variation in the KAP6-1 gene in Chinese Tan sheep and associations with variation in wool traits. Small Ruminant Research 154, 129132.
Tao, J, Zhou, H, Yang, Z, Gong, H, Ma, Q, Ding, W, Li, Y and Hickford, JGH (2017 b) Variation in the KAP8-2 gene affects wool crimp and growth in Chinese Tan sheep. Small Ruminant Research 149, 7780.
Zhou, H, Hickford, JGH and Fang, Q (2006) A two-step procedure for extracting genomic DNA from dried blood spots on filter paper for polymerase chain reaction amplification. Analytical Biochemistry 354, 159161.
Zhou, H, Gong, H, Li, S, Luo, Y and Hickford, JGH (2015) A 57-bp deletion in the ovine KAP6-1 gene affects wool fibre diameter. Journal of Animal Breeding and Genetics 132, 301307.

Keywords

Related content

Powered by UNSILO

Variation in ovine KRTAP8-1 is associated with variation in wool fibre staple strength and curvature

  • H. Gong (a1) (a2), H. Zhou (a1) (a2), W. Li (a2) (a3), J. Wang (a1) (a3), S. Li (a1) (a3), Y. Luo (a1) (a3) and J. G. H. Hickford (a1) (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.