Skip to main content Accessibility help

Suppressive efficacy of volatile compounds produced by Bacillus mycoides on damping-off pathogens of cabbage seedlings

  • J.-S. Huang (a1), Y.-H. Peng (a1), K.-R. Chung (a1) and J.-W. Huang (a1) (a2)


Rhizoctonia solani Kühn and Pythium aphanidermatum Edson cause cabbage seedling damping-off, resulting in severe yield losses. The current study demonstrates the production of toxic volatile organic compounds (VOCs) by two strains of Bacillus mycoides and the evaluation of a potential use of B. mycoides as a biocontrol agent to control cabbage damping-off. Two VOCs, dimethyl disulphide and ammonia, were found to reduce radial growth, cause hyphal deformation and result in organelle degeneration in both R. solani and P. aphanidermatum. Pathogen hyphae, after being exposed to VOCs, showed poor rigidity, shrinkage, curling and swelling. The amount of VOCs produced by B. mycoides and the antagonistic activity against plant pathogens varied, depending on the type of medium used to culture bacteria. Application of B. mycoides cell suspensions to cultivation medium promotes growth of five different plant species tested. Experiments conducted in greenhouses revealed that B. mycoides did not reduce damping-off incidence caused by R. solani. However, B. mycoides reduced damping-off incidence induced by P. aphanidermatum by as much as 45% on cabbage seedlings. The results provide valuable information on the feasibility of utilizing B. mycoides as a biocontrol agent in controlling cabbage damping-off.


Corresponding author

Authors for correspondence: K.-R. Chung, E-mail: and J.-W. Huang, E-mail:


Hide All
Adams, DJ (2004) Fungal cell wall chitinases and glucanases. Microbiology (Reading, England) 150, 20292035.
Anakwenze, VN, Ezemba, CC and Ekwealor, IA (2014) Improved cultural conditions for methionine accumulation in submerged cultivation of Bacillus cereus S8. British Microbiology Research Journal 4, 885895.
Arrebola, E, Sivakumar, D and Korsten, L (2010) Effect of VOCs produced by Bacillus strains on postharvest decay in citrus. Biological Control 53, 122128.
Atlas, RM (1993) Handbook of Microbiological Media. Boca Raton, FL, USA: CRC Press.
Audrain, B, Farag, MA, Ryu, CM and Ghigo, JM (2015) Role of bacterial VOCs in bacterial biology. FEMS Microbiology Review 39, 222233.
Auger, J, Arnault, I, Diwo-Allain, S, Ravier, N, Molia, F and Pettiti, M (2004) Insecticidal and fungicidal potential of Allium substances as biofumigants. Agroindustria 3, 58.
Bargabus, RL, Zidack, NK, Sherwood, JE and Jacobsen, BJ (2004) Screening for the identification of potential biological control agents that induce systemic acquired resistance in sugar beet. Biological Control 30, 342350.
Blaschek, W, Käsbauer, J, Kraus, J and Franz, G (1992) Pythium aphanidermatum: culture, cell-wall composition, and isolation and structure of antitumour storage and solubilised cell-wall (1-3)(1-6)-beta-D-glucans. Carbohydrate Research 231, 293307.
Blom, D, Fabbri, C, Eberl, L and Weisskopf, L (2011) Volatile-mediated killing of Arabidopsis thaliana by bacteria is mainly due to hydrogen cyanide. Applied and Environmental Microbiology 77, 10001008.
Buyer, JS (1995) A soil and rhizosphere microorganism isolation and enumeration medium that inhibits Bacillus mycoides. Applied and Environmental Microbiology 61, 18391842.
Chaurasia, B, Pandey, A, Palni, LM, Trivedi, P, Kumar, B and Colvin, N (2005) Diffusible and VOCs produced by an antagonistic Bacillus subtilis strain cause structural deformations in pathogenic fungi in vitro. Microbiological Research 160, 7581.
Chen, JT, Lin, MJ and Huang, JW (2015) Efficacy of spent blewit mushroom compost and Bacillus aryabhattai combination on control of Pythium damping-off in cucumber. Journal of Agricultural Science, Cambridge 153, 12571266.
Cherif, A, Borin, S, Rizzi, A, Ouzari, H, Boudabous, A and Daffonchio, D (2002) Characterization of a repetitive element polymorphism-polymerase chain reaction chromosomal marker that discriminates Bacillus anthracis from related species. Journal of Applied Microbiology 93, 456462.
Claeson, AS, Sandstrom, M and Sunesson, AL (2007) Volatile organic compounds (VOCs) emitted from materials collected from buildings affected by microorganisms. Journal of Environmental Monitoring 9, 240245.
Claus, D and Berkeley, RCW (1986) Genus Bacillus chon 1872. In Sneath, PHA, Mair, NS, Sharpe, ME and Holt, JG (eds), Bergey's Manual of Systematic Bacteriology, vol. 2. Baltimore, USA: Williams and Wilkins, pp. 11051139.
Czaban, J, Ksiezniak, A, Wroblewska, B and Paszkowski, WL (2004 a) An attempt to protect winter wheat against Gaeumannomyces graminis var. tritici by the use of rhizobacteria Pseudomonas fluorescens and Bacillus mycoides. Polish Journal of Microbiology 53, 101110.
Czaban, J, Ksiezniak, A and Paszkowski, W (2004 b) An attempt to protect winter wheat against Fusarium culmorum by the use of rhizobacteria Pseudomonas fluorescens and Bacillus mycoides. Polish Journal of Microbiology 53, 175182.
Di Francesco, A, Ugolini, L, Lazzeri, L and Mari, M (2015) Production of volatile organic compounds by Aureobasidium pullulans as a potential mechanism of action against postharvest fruit pathogens. Biological Control 81, 814.
Di Franco, C, Beccari, E, Santini, T, Pisaneschi, G and Tecce, G (2002) Colony shape as a genetic trait in the pattern-forming Bacillus mycoides. BMC Microbiology 2, 33.
Ding, PF and Huang, JW (2017) Identification and evaluation of Bacillus mycoides as a biocontrol agent for controlling tomato Fusarium wilt. Plant Medicine 59, 1926, in Chinese.
Driks, A (2004) The Bacillus spore coat. Phytopathology 94, 12491251.
Edwards, RA, Dainty, RH and Hibbard, CM (1987) VOCs produced by meat pseudomonads and related reference strains during growth on beef stored in air at chill temperatures. Journal of Applied Bacteriology 62, 403412.
Endoh, T, Kasuga, K, Horinouchi, M, Yoshida, H, Habe, H, Nojiri, H and Omori, T (2003) Characterization and identification of genes essential for dimethyl sulfide utilization in Pseudomonas putida strain DS1. Applied Microbiology and Biotechnology 62, 8391.
Farag, MA, Ryu, CM, Sumner, LW and Pare, PW (2006) GC-MS SPME profiling of rhizobacterial volatiles reveals prospective inducers of growth promotion and induced systemic resistance in plants. Phytochemistry 67, 22622268.
Fernando, WGD, Ramarathnam, R, Krishnamoorthy, AS and Savchuk, SC (2005) Identification and use of potential bacterial organic antifungal volatiles in biocontrol. Soil Biology and Biochemistry 37, 955964.
Fiddaman, PJ and Rossall, S (1993) The production of antifungal volatiles by Bacillus subtilis. Journal of Applied Bacteriology 74, 119126.
Gardener, BBM and Driks, D (2004) Overview of the nature and application of biocontrol microbes: Bacillus spp. Phytopathology 94, 1244.
Howell, CR, Beier, RC and Stipanovic, RD (1988) Production of ammonia by Enterobacter cloacae and its possible role in the biological control of Pythium preemergence damping-off by the bacterium. Phytopathology 78, 10751078.
Hsieh, TY, Lin, TC, Lin, CL, Chung, KR and Huang, JW (2016) Reduction of Rhizoctonia damping-off in Chinese cabbage seedlings by fungal protein activators. Plant Medicine 58, 18.
Huang, CJ, Tsay, JF, Chang, SY, Yang, HP, Wu, WS and Chen, CY (2012) Dimethyl disulfide is an induced systemic resistance elicitor produced by Bacillus cereus C1L. Pest Management Science 68, 13061310.
Kai, M, Effmert, U, Berg, G and Piechulla, B (2007) Volatiles of bacteria; antagonists inhibit mycelial growth of the plant pathogen Rhizoctonia solani. Archives of Microbiology 187, 351360.
Kanchiswamy, CN, Malnoy, M and Maffei, ME (2015) Bioprospecting bacterial and fungal volatiles for sustainable agriculture. Trends in Plant Science 20, 206211.
Keinath, AP, Cubeta, MA and Langston, DB Jr (2006) Cabbage diseases, ecology and control. In Pimentel, D (ed.) Encyclopedia of Pest Management. New York, NY, USA: Taylor and Francis, pp. 14.
King, EO, Ward, MK and Raney, DE (1954) Two simple media for the demonstration of pyocyanin and fluorescin. Journal of Laboratory and Clinical Medicine 44, 301307.
Li, Q, Ning, P, Zheng, L, Huang, J, Li, G and Hsiang, T (2012) Effects of volatile substances of Streptomyces globisporus JK-1 on control of Botrytis cinerea on tomato fruit. Biological Control 61, 113120.
Meldau, DG, Meldau, S, Hoang, LH, Underberg, S, Wünsche, H and Baldwin, IT (2013) Dimethyl disulfide produced by the naturally associated bacterium bacillus sp. B55 promotes Nicotiana attenuata growth by enhancing sulfur nutrition. Plant Cell 25, 27312747.
Pal, KK and Gardener, BM (2006) Biological control of plant pathogens. Plant Heath Instructor, doi: 10.1094/PHI-A-2006-1117-02.
Peng, YH, Chou, YJ, Liu, YC, Jen, JF, Chung, KR and Huang, JW (2017) Inhibition of cucumber Pythium damping-off pathogen with zoosporicidal biosurfactants produced by Bacillus mycoides. Journal of Plant Diseases and Protection 124, 481491.
Petersen, DJ, Shishido, M, Holl, FB and Chanway, CD (1995) Use of species and strain-specific PCR primers for identification of conifer root associated Bacillus spp. FEMS Microbiology Letter 133, 7176.
Rivas, R, Velázquez, E, Zurdo-Piñeiro, JL, Mateos, PF and Martínez Molina, E (2004) Identification of microorganisms by PCR amplification and sequencing of a universal amplified ribosomal region present in both prokaryotes and eukaryotes. Journal of Microbiological Methods 56, 413426.
Ryu, CM, Farag, MA, Hu, CH, Reddy, MS, Klopper, JW and Paré, PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiology 134, 10171026.
Schulz, S and Dickschat, JS (2007) Bacterial volatiles: the smell of small organisms. Natural Product Reports 24, 814842.
Shafi, J, Tian, H and Ji, M (2017) Bacillus species as versatile weapons for plant pathogens: a review. Biotechnology and Biotechnological Equipment 31, 446459.
Siddiqui, ZA (2006) PGPR: Biocontrol and Biofertilization. Dordrecht, The Netherlands: Springer Publication.
Stephens, CT, Herr, LJ, Schmitthenner, AF and Powell, CC (1982) Characterization of Rhizoctonia isolates associated with damping-off bedding plants. Plant Disease 66, 700703.
Stinson, M, Ezra, D, Hess, WM, Sears, J and Strobel, G (2003) An endophytic Gliocladium sp. of Eucryphia cordifolia producing selective volatile antimicrobial compounds. Plant Science 165, 913922.
Vaughn, SF and Spencer, GF (1994) Antifungal activity of natural compounds against thiabendazole-resistant Fusarium sambucinum strains. Journal of Agricultural and Food Chemistry 42, 200203.
Wan, M, Li, G, Zhang, J, Jiang, D and Huang, HC (2008) Effect of volatile substances of Streptomyces platensis F-1 on control of plant fungal diseases. Biological Control 46, 552559.
Weise, T, Kai, M and Piechulla, B (2013) Bacterial ammonia causes significant plant growth inhibition. PLoS ONE 8, e63538.
Whipps, JM (2001) Microbial interactions and biocontrol in the rhizosphere. Journal of Experimental Botany 52(suppl. 1), 487511.
Yamada, S, Ohashi, E, Agata, N and Venkateswaran, K (1999) Cloning and nucleotide sequence analysis of gyrB of Bacillus cereus, B. thuringiensis, B. mycoides, and B. anthracis and their application to the detection of B. cereus in rice. Applied and Environmental Microbiology 65, 14831490.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed