Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-20T15:10:35.676Z Has data issue: false hasContentIssue false

Shorn and unshorn Awassi sheep I. Body temperature

Published online by Cambridge University Press:  27 March 2009

E. Eyal
Affiliation:
Division of Animal Husbandry, National and University Institute of Agriculture, Rehovot, Israel

Extract

1. The rectal temperatures of shorn and unshorn Awassi sheep were measured at various hours of the day and during various seasons of the year in two different locations in Israel.

2. An increase in body temperature accompanied an increase in environmental temperature. A steeper temperature increase was noted in shorn sheep kept in the shade. When ambient temperatures were below 30° C. the body temperature of shorn sheep was lower than that of the unshorn sheep by an average of 0·16° C.

3. When ambient temperatures were above 30° C. the body temperature of shorn sheep was equal to or higher than that of unshorn ones.

4. Upon exposure to direct sunlight, the body temperature of shorn sheep exceeded that of unshorn animals. However, when the animals were transferred to the shade, or after sunset, the shorn sheep cooled at a faster rate. Their body temperature fell below that of the unshorn sheep during the cool hours of the day.

5. Wind velocity, both in the shade and in the sun, had a greater effect on shorn than on unshorn sheep.

6. A rise in the relative humidity of ambient temperatures above 25° C. caused body temperature to rise, particularly in unshorn animals. The body temperature of shorn sheep exceeded that of unshorn ones when the animals were maintained in a hot and dry environment.

7. While the body of the shorn sheep was entirely affected by the macroclimate, the unshorn sheep were greatly influenced by the microclimate existing in the fleece. Fleece temperatures always lagged behind and were rarely equal to environmental temperatures. Since it was postulated that heat tolerance of certain animals was related to their ability to exploit cool hours of the day, it is suggested that in certain ‘tolerance tests’ records should be taken not only during exposure to heat but also during cool hours of the day.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1963

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adolph, E. F. (1938). Amer. J. Physiol. 123, 486.CrossRefGoogle Scholar
Adolph, E. F. & Molnar, G. W. (1946). Amer. J. Physiol. 146, 507.CrossRefGoogle Scholar
Ashbel, D. (1940). Climate. Publ. Hebrew Univ. Jerusalem (Hebrew).Google Scholar
Axelson, J. (1946). Landbuksacad. Tidskr. 85, 253.Google Scholar
Badereldin, A. L. & Ghany, M. A. (1954). J. Agric. Sci. 44, 160.CrossRefGoogle Scholar
Bazett, H. C. (1927). Physiol. Rev. 7, 531.CrossRefGoogle Scholar
Beakley, W. R. & Findlay, J. D. (1954). Progress in the Physiology of Farm Animals, edit. Hammond, . London: Butterworth.Google Scholar
Beakley, W. R. & Findlay, J. D. (1955). J. Agric. Sci. 45, 339.CrossRefGoogle Scholar
Berman, A. (1959). Thesis Fac. Agric, Hebrew Univ. Jerusalem (Hebrew).Google Scholar
Blaxter, K. L., Graham, N. McC. & Wainman, F. W. (1959). J. Agric. Sci. 52, 41.CrossRefGoogle Scholar
Blum, H. F. (1945). J. Clin. Invest. 24, 712.CrossRefGoogle Scholar
Bonsma, J. C. (1940). Fmg in S. Afr. 18, 101.Google Scholar
Brody, S. (1945). Bioenergetics and Growth. Rheinhold.Google Scholar
Brody, S. (1948). Res. Bull. Mo. Agric. Exp. Sta. no. 423.Google Scholar
Brody, S., Ragsdale, A. C., Yeck, R. G. & Worstell, D. (1955). Res. Bull. Mo. Agric. Exp. Sta. no. 578.Google Scholar
Burton, A. C. (1944). Rep. to Aviation Med. Res. Assn. Comm. C2754 (SPC 156).Google Scholar
Dowling, D. F. (1956). Aust. J. Agric. Res. 7, 469.CrossRefGoogle Scholar
Dutt, R. H., Ellington, E. F. & Carlton, W. W. (1956). Abst. 48th Meeting Amer. Soc. Anim. Prod.Google Scholar
Dutt, R. H. & Hamm, P. T. (1957). J. Anim. Sci. 16, 328.CrossRefGoogle Scholar
Eyal, E. (1963 a). J. Agric. Sci. 60, 175.CrossRefGoogle Scholar
Eyal, E. (1963 b). J. Agric. Sci. 60, 183.CrossRefGoogle Scholar
Findlay, J. D. (1950). Bull. Hannah Dairy Inst. no. 9.Google Scholar
Foote, W. C., Rope, A. L., Nichols, R. E. & Cassida, L. E. (1956). J. Anim. Sci. 16, 144.CrossRefGoogle Scholar
Gagge, A. P., Winslow, C. E. A. & Herrington, L. P. (1938). Amer. J. Physiol. 124, 30.CrossRefGoogle Scholar
Gelineo, S., Ogle, C. & Mills, C. A. (1933). Amer. J. Physiol. 103, 606.Google Scholar
Hardy, J. D. (1949). Physiology of Heat Regulation, edit. Newburgh, , pp. 78108. Saunders.Google Scholar
Hart, J. S. (1957). Rev. Canad. Biol. 16, 133.Google Scholar
Kibler, H. H., Brody, S. & Worstell, D. M. (1949). Res. Bull. Mo. Agric. Exp. Sta. no. 435.Google Scholar
Lee, D. H. K. (1950). Aust. J. Agric. Res. 1, 200.CrossRefGoogle Scholar
Macfarlane, W. V., Morris, R. J. H. & Howard, B. (1958). Aust. J. Agric. Res. 9, 217.CrossRefGoogle Scholar
Mcdowell, R. E., Mathews, C. A., Lee, D. H. K. & Fohrman, M. H. (1953). J. Anim. Sci. 12, 757.CrossRefGoogle Scholar
Newburgh, L. H. (1949). Physiology of Heat Regulation and the Science of Clothing. Philadelphia and London: Saunders.Google Scholar
Payne, W. J. A. & Hancock, J. (1957). Emp. J. Exp. Agric. 25, 321.Google Scholar
Phillips, R. W. (1949). Breeding livestock adapted to unfavourable environments. F.A.O. Agric. Studies, no. 1.Google Scholar
Priestly, C. A. B. (1957). Aust. J. Agric. Res. 8, 271.CrossRefGoogle Scholar
Ragsdale, A. C., Brody, S., Thompson, H. J. & Worstell, D. M. (1948). Res. Bull. Mo. Agric. Exp. Sta. no. 425.Google Scholar
Ragsdale, A. C., Thompson, H. J., Worstell, D. M. & Brody, S. (1950). Res. Bull. Mo. Agric. Exp. Sta. no. 460.Google Scholar
Ragsdale, A. C., Thompson, H. J., Worstell, D. M. & Brody, S. (1951). Res. Bull. Mo. Agric. Exp. Sta. no. 471.Google Scholar
Ragsdale, A. C., Worstell, D. M., Thompson, H. J. & Brody, S. (1949). Res. Bull. Mo. Agric. Exp. Sta. no. 449.Google Scholar
Riek, R. F., Hardy, M. H., Lee, D. H. K. & Carter, H. B. (1950). Aust. J. Agric. Res. 1, 217.Google Scholar
Riemerschmid, G. (1943). Onderspoort J. Vet. Sci. 18, 327.Google Scholar
Riemerschmid, G. & Elder, J. S. (1945). J. Vet. Sci. 2, 223.Google Scholar
Rhoad, A. O. (1944). Trop. Agric, Trin., 21, 162.Google Scholar
Schindler, H. (1957). Ktavim, 5, 27.Google Scholar
Stewart, R. E., Pickett, E. E. & Brody, S. (1951). Res. Bull. Mo. Agric. Exp. Sta. no. 484.Google Scholar
Volcani, R. (1957). Bull. Agric. Res. Sta., Rehovot, Israel, no. 8.Google Scholar
Volcani, R. & Tennenbaum, J. (1958). Personal communication.Google Scholar
Winslow, C. E. A., Herrington, L. P. & Gagge, A. P. (1926). Amer. J. Physiol. 116, 641.CrossRefGoogle Scholar
Worstell, D. M. & Brody, S. (1953). Res. Bull. Mo. Agric. Exp. Sta. no. 515.Google Scholar