Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T12:54:34.193Z Has data issue: false hasContentIssue false

The relationship between the cell-wall constituents of roughages and the digestibility of the organic matter

Published online by Cambridge University Press:  27 March 2009

Blanche D. E. Gaillard
Affiliation:
Laboratory of Animal Physiology, Agricultural University, Wageningen, The Netherlands

Extract

There is a strong correlation between the digestibility of the organic matter and the percentage crude fibre, percentage lignin, and percentage cellulose plus lignin in the foodstuffs examined.

There is evidence that the holocellulose and xylan in grasses are different from those in legumes in the extent to which they are digested. It is suggested that this is due mainly to the xylans or hemicellulose fraction in the forages, and may be a reflexion of a different molecular structure for the xylans in either group.

Within each group of plants both the holocellulose and xylan percentages are strongly correlated to the percentage digestible organic matter.

Excessive heating of hay led to a marked rise in the percentage lignin. This is probably due to the xylans becoming horny and insoluble, therefore being determined as lignin. This also offers an explanation for the decrease in digestibility of the organic matter.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1962

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Charlet-Lery, G., Francois, A. C. & Leroy, A. M. (1952). Ann. Zoot. 1, 45.CrossRefGoogle Scholar
Crampton, E. W. & Maynard, L. A. (1938). J. Nutr. 15, 383.CrossRefGoogle Scholar
Dijkstra, N. D. (1955 a). Landbouwk. Tijdschr, 67, 201.Google Scholar
Dijkstra, N. D. (1955 b). Versl. landbouwk. Onderzoek. 61, 16.Google Scholar
Dijkstra, N. D. (1957). Versl. landbouwk. Onderzoek. 63, 8.Google Scholar
Dijkstra, N. D. & Brandsma, S. (1955). Versl. landbouwk. Onderzoek. 61, 5.Google Scholar
Dijkstra, N. D. & V.D. Schaaf, D. (1955). Versl. landbouwk. Onderzoek. 61, 15.Google Scholar
Dijkstra, N. D. & Sprenger, J. J. I. (1955). Versl. landbouwk. Onderzoek. 61, 1.Google Scholar
Ely, R. E. & Moore, L. A. (1959). Grasslds Bull. 173.Google Scholar
Ferguson, W. S. (1948). Agric. Progr. 23, 129.Google Scholar
Flanders, C. A. (1952). Arch. Biochem. Biophys. 36, 421.CrossRefGoogle Scholar
Forbes, R. M. & Garrigus, W. P. (1950). J. Anim. Sci. 9, 354.CrossRefGoogle Scholar
Gaillard, B. D. E. (1958 a). J. Sci. Fd Agric. 9, 170.CrossRefGoogle Scholar
Gaillard, B. D. E. (1958 b). J. Sci. Fd Agric. 9, 346.CrossRefGoogle Scholar
Harwood, V. D. (1954). J. Sci. Fd Agric. 5, 270.CrossRefGoogle Scholar
Jarrige, R. (1961). Ann. Biol. Anim. Bioch. Biophya. 1, 2.Google Scholar
Kamstra, L. D., Moxon, A. L. & Bentley, O. G. (1958). J. Anim. Sci. 17, 199.CrossRefGoogle Scholar
Lancaster, R. J. (1943). N.Z. J. Sci. Tech. A, 25, 137.Google Scholar
Laube, W. (1960). Arch. Tierernähr. 10, 99.CrossRefGoogle Scholar
Nordfelt, S., Svanberg, O. & Claesson, O. (1949). Acta Agric. Suec. 3, 135.Google Scholar
Sullivan, J. T. (1955). J. Anim. Sci. 14, 710.CrossRefGoogle Scholar
Waite, R. & Gorrod, A. R. N. (1959a). J. Sci. Fd Agric. 10, 308.CrossRefGoogle Scholar
Waite, R. & Gorrod, A. R. N. (1959b). J. Sci. Fd Agric. 10, 317.CrossRefGoogle Scholar
Walker, D. M. & Hepburn, W. R. (1955). J. Agric. Sci. 45, 298.CrossRefGoogle Scholar