Skip to main content Accessibility help
×
Home

Ratios of plant to soil concentrations of strontium-85 and their relation to exchangeable bases for soils and crops of Greece

  • E. P. Papanicolaou (a1), C. G. Apostolakis (a1), V. Skarlou (a1), C. Nobeli (a1) and P. Kritidis (a2)...

Summary

The relationship between values of 85Sr concentration ratios (CRs) and exchangeable bases, expressed in absolute (mmol/kg) or relative (percentage of cation exchange capacity (CEC)) terms, was considered using the results of a glasshouse pot experiment conducted in 1989, for soils and crops of Greece. Exchangeable calcium, expressed in mmol/kg, presented, in most instances, a significant (P = 0·05–0·01) or highly significant (P < 0·01) negative correlation with the CRs of various crops or plant parts, while exchangeable calcium plus magnesium or total exchangeable bases (expressed also in mmol/kg) showed an even better correlation (higher values of r, lower variability). Expression of the amounts of exchangeable bases in relative terms further improved the correlation coefficient in each comparison. The correlations between the percentage of exchangeable (Ca + Mg) or exchangeable bases and CRs, which were always negative, were significant or highly significant for all tested crops or plant parts. The correlation between CRs and soil properties was greatest for exchangeable (Ca + Mg) expressed as a percentage of CEC (r = -0·92) and followed the order: Exchangeable (Ca + Mg) as % of CEC ≈ exchangeable bases as % of CEC ≈ exchangeable (Ca + Mg) in mmol/kg ≈ exchangeable bases in mmol/kg > exchangeable Ca as % of CEC > exchangeable Ca in mmol/kg.

Quantitative relationships between CRs of the tested crops or plant parts and exchangeable calcium plus magnesium (% of CEC) of soils are also presented.

Copyright

References

Hide All
Bower, C. A., Reitemeier, F. & Fireman, M. (1952). Exchangeable cation analysis of saline and alkali soils. Soil Science 73, 251261.
Carlson, R. M. & Overstreet, R. (1967). A study of the ion exchange behavior of the alkaline earth metals. Soil Science 103, 213218.
Comar, C. L., Russell, R. S. & Wasserman, R. H. (1957). Strontium-calcium movement from soil to man. Science 126, 485492.
Dergunov, I. D., Moroz, V. D. & Ryabova, G. V. (1982). Forecast of 90Sr accumulation in the crop harvest from physicochemical soil properties. Soviet Soil Science 14, 107111.
Heine, K. & Wiechen, A. (1979). Studies on the transfer factors of Sr-90 and further fallout radionuclides in the food chain soil-plant-milk in the surroundings of Gorleben. Kieler Milchwirtschaftliche Forschungsberichte 31, 283295 [in German].
Misopolinos, N. D. & Kalovoulos, J. M. (1984). Determination of CEC and exchangeable Ca and Mg in non-saline calcareous soils. Journal of Soil Science 35, 9398.
Papanicolaou, E. P. (1976). Determination of cation exchange capacity of calcareous soils and their percent base saturation. Soil Science 121, 6571.
Papanicolaou, E. P. & Overstreet, R. (1969). The determination of cation exchange capacity over a wide range of pH using various index cations. Zeitschrift für Pflanzenernährung und Bodenkunde 123, 205212.
Papanicolaou, E. P., Apostolakis, C. G., Skarlou, V., Nobeli, C. & Kritidis, P. (1991). Ratio of plant to soil concentrations of strontium-85 and its relation to properties of Greek soils. Journal of Agricultural Science, Cambridge 116, 275279.

Ratios of plant to soil concentrations of strontium-85 and their relation to exchangeable bases for soils and crops of Greece

  • E. P. Papanicolaou (a1), C. G. Apostolakis (a1), V. Skarlou (a1), C. Nobeli (a1) and P. Kritidis (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed