Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-25T01:08:39.826Z Has data issue: false hasContentIssue false

Radiation interception and conversion to biomass in two potassium-deficient cotton crops in South Benin

Published online by Cambridge University Press:  15 January 2009

E. GERARDEAUX*
Affiliation:
CIRAD, UR Systèmes de culture annuels, Montpellier, France
L. JORDAN-MEILLE
Affiliation:
ENITA, UMR 1220 TCEM, Bordeaux, France
S. PELLERIN
Affiliation:
INRA, UMR 1220 TCEM, Bordeaux, France
*
*To whom all correspondence should be addressed. Address for correspondence: CIRAD, Av d'agropolis, TA72/09 34398 Montepellier cedex 5, France. Email: gerardeaux@cirad.fr

Summary

A potassium fertilizer field trial of rain-fed cotton crop was carried out on ferrasols at two sites in Benin. The measurements focused on leaf formation patterns and their ability to convert intercepted photosynthetically active radiation (PAR) into biomass. The results highlighted the role of K in plant architecture and leaf area development. On K deficient plots, the reduction in leaf area was mostly the result of a decreased number of leaves and, to a lesser extent, leaves of a smaller individual size. During vegetative growth, leaf senescence did not differ between treatments. Biomass partitioning to different plant compartments was found to be affected by potassium deficiency, in favour of leaves. No significant effect of K treatment was observed on the conversion of intercepted radiation into biomass.

Type
Crops and Soils
Copyright
Copyright © 2009 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Amtmann, A., Hammond, J. P., Armengaud, P. & White, P. J. (2006). Nutrient sensing and signalling in plants: potassium and phosphorus. Advances in Botanical Research 43, 209257.CrossRefGoogle Scholar
Arkebauer, T. J., Weiss, A., Sinclair, T. R. & Blum, A. (1994). In defense of radiation use efficiency: a response to Demetriades-Shah et al. (1992). Agricultural and Forest Meteorology 68, 221227.CrossRefGoogle Scholar
Barraclough, P. B. (1993). Nutrient storage pool concentrations in plants as diagnostic indicators of nutrient sufficiency. Plant and Soil 156, 175178.CrossRefGoogle Scholar
Bednarz, C. W. & Oosterhuis, D. M. (1999). Physiological changes associated with potassium deficiency in cotton. Journal of Plant Nutrition 22, 303313.CrossRefGoogle Scholar
Bednarz, C. W., Oosterhuis, D. M. & Evans, R. D. (1998). Leaf photosynthesis and carbon isotope discrimination of cotton in response to potassium deficiency. Environmental and Experimental Botany 39, 131139.CrossRefGoogle Scholar
Black, C. & Ong, C. (2000). Utilisation of light and water in tropical agriculture. Agricultural and Forest Meteorology 104, 2547.CrossRefGoogle Scholar
Bonhomme, R. (2000). Beware of comparing RUE values calculated from PAR vs solar radiation or absorbed vs intercepted radiation. Field Crops Research 68, 247252.CrossRefGoogle Scholar
Braud, M. (1975). Le diagnostic foliaire et la nutrition potassique du cotonnier. Coton et Fibres Tropicales 30, 237244.Google Scholar
Burns, I. G. (1992). Influence of plant nutrient concentration on growth rate. Use of a nutrient interruption technique to determine critical concentrations of N, P and K in young plants. Plant and Soil 142, 221233.CrossRefGoogle Scholar
Buxton, D. R., Briggs, R. E., Patterson, L. L. & Watkins, S. D. (1977). Canopy characteristics of narrow-row cotton as influenced by plant density. Agronomy Journal 69, 929933.CrossRefGoogle Scholar
Cakmak, I. (1994). Activity of ascorbate-dependent H2O2-scavenging enzymes and leaf chlorosis are enhanced in magnesium- and potassium-deficient leaves, but not in phosphorus-deficient leaves. Journal of Experimental Botany 45, 12591266.CrossRefGoogle Scholar
Cakmak, I., Hengeler, C. & Marschner, H. (1994). Changes in phloem export of sucrose in leaves in response to phosphorus, potassium and magnesium deficiency in bean plants. Journal of Experimental Botany 45, 12511257.CrossRefGoogle Scholar
Caporn, S. J. M., Ludwig, L. J. & Flowers, T. J. (1982). Potassium deficiency and photosynthesis in tomato. In Plant Nutrition: Proceedings of the 9th Congress of the International Potash Institute, Antibes (France) (Ed.Scaife, A.), pp. 7883. Walingford, UK: CABI.Google Scholar
Cassman, K. G., Kerby, T. A., Roberts, B. A., Bryant, D. C. & Brouder, S. M. (1989). Differential response of two cotton cultivars to fertilizer and soil potassium. Agronomy Journal 81, 870876.CrossRefGoogle Scholar
Cassman, K. G., Kerby, T. A., Roberts, B. A., Bryant, D. C. & Higashi, S. L. (1990). Potassium nutrition effects on lint yield and fiber quality of Acala cotton. Crop Science 30, 672677.CrossRefGoogle Scholar
Coelho, M. B. (1998). Desarollo de un Modelo Suelo-Agua-Planta para el Cultivo del Algodon. Tesis Doctorales, Departamento de Agronomia, Escuela Technica Superior de Ingenieros Agronomos y de Montes, Universidad de Córdoba, Córdoba, Spain.Google Scholar
Constable, G. A. (1986). Growth and light receipt by mainstem cotton leaves in relation to plant density in the field. Agriculture and Forest Meteorology 37, 279292.CrossRefGoogle Scholar
Ericsson, T. (1995). Growth and shoot:root ratio of seedlings in relation to nutrient availability. Plant and Soil 168–169, 205214.CrossRefGoogle Scholar
Evans, H. J. & Sorger, G. J. (1966). Role of mineral elements with emphasis on the univalent cations. Annual Review of Plant Physiology 17, 4776.CrossRefGoogle Scholar
Fischer, R. A. (2004). Stomatal opening: role of potassium uptake by guard cells. Science 160, 784785.CrossRefGoogle Scholar
Giaquinta, R. T. (1977). Possible role of pH gradient and membrane ATPase in loading of sucrose into sieve tubes. Nature 267, 369370.CrossRefGoogle Scholar
Greenwood, D. J. & Karpinets, T. V. (1997). Dynamic model for the effects of K-fertilizer on crop growth, K-uptake and soil-K arable cropping. 1. Description of the model. Soil Use and Management 13, 178183.CrossRefGoogle Scholar
Gulick, S. H. & Cassman, K. G. (1989). Exploitation of soil potassium in layered profiles by root systems of cotton and barley. Soil Science Society of America Journal 53, 146153.CrossRefGoogle Scholar
Gwathmey, O. C. & Howard, D. D. (1998). Potassium effects on canopy light interception and earliness of no-tillage cotton. Agronomy Journal 90, 144149.CrossRefGoogle Scholar
Heitholt, J. J., Pettigrew, T. & Meredith, W. R. Jr. ( 1992). Light interception and lint yield of narrow-row cotton. Crop Science 32, 728733.CrossRefGoogle Scholar
Hicks, S. K. & Lascano, R. J. (1995). Estimation of leaf area index for cotton canopies using the LI-COR LAI-2000 plant canopy analyser. Agronomy Journal 87, 458464.CrossRefGoogle Scholar
Jordan-Meille, L. & Pellerin, S. (2004). Leaf area establishment of a maize (Zea mays L.) field crop under potassium deficiency. Plant and Soil 265, 7592.CrossRefGoogle Scholar
Kanai, S., Ohkura, K., Adu-Gyamfi, J. J., Mohapatra, P. K., Nguyen, N. T., Saneoka, H. & Fujita, K. (2007). Depression of sink activity precedes the inhibition of biomass production in tomato plants subjected to potassium deficiency stress. Journal of Experimental Botany 58, 29172928.CrossRefGoogle ScholarPubMed
Lacape, M. J. (1998). Analyse écophysiologique de la réponse variétale de cotonnier au déficit hydrique. PhD Thesis, Ecole Nationale Supérieure Agronomique, Montpellier, France.Google Scholar
Leigh, R. A. & Wyn Jones, R. G. (1984). A hypothesis relating critical potassium concentrations for growth to the distribution and functions of this ion in the plant cell. New Phytologist 97, 113.CrossRefGoogle Scholar
Lizaso, J. I., Batchelor, W. D., Westgate, M. E. & Echarte, L. (2003). Enhancing the ability of CERES-Maize to compute light capture. Agricultural Systems 76, 293311.CrossRefGoogle Scholar
Ludwig, L. J., Saeki, T. & Evans, L. T. (1965). Photosynthesis in artificial communities of cotton plants in relation to leaf area. I. Experiments with progressive defoliation of mature plants. Australian Journal of Biological Sciences 18, 11031118.CrossRefGoogle Scholar
Monteith, J. L. (1972). Solar radiation and productivity in tropical ecosystems. Journal of Applied Ecology 9, 747766.CrossRefGoogle Scholar
Monteith, J. L. (1977). Climate and efficiency of crop production in Britain. Philosophical Transactions of the Royal Society of London 281, 277294.Google Scholar
Monteith, J. L. (1985). Evaporation from land surfaces: progress in analysis and prediction since 1948. In Advances in Evapotranspiration, Proceedings of the National Conference on Advances in Evapotranspiration, 16–17 Dec., Chicago, IL. pp. 412. St. Joseph, MI: American Society of Agricultural Engineers.Google Scholar
Monteith, J. L. (1994). Validity of the correlation between intercepted radiation and biomass. Agricultural and Forest Meteorology 68, 213220.CrossRefGoogle Scholar
Morse, S., Bennett, R. & Ismael, Y. (2007). Isolating the ‘farmer’ effect as a component of the advantage of growing genetically modified varieties in developing countries: a Bt cotton case study from Jalgaon, India. Journal of Agricultural Science, Cambridge 145, 491500.CrossRefGoogle Scholar
Mutsaers, H. J. W. (1983). Leaf growth in cotton (Gossypium hirsutum L.) 1. Growth in area of main-stem and sympodial leaves. Annals of Botany 51, 503520.CrossRefGoogle Scholar
Patterson, L. L., Buxton, D. R. & Briggs, R. E. (1978). Fruiting in cotton as affected by controlled boll set. Agronomy Journal 70, 118122.CrossRefGoogle Scholar
Pervez, H., Ashraf, M. & Makhdum, M. I. (2004). Influence of potassium nutrition on gas exchange characteristics and water relations in cotton (Gossypium hirsutum L.). Photosynthetica 42, 251255.CrossRefGoogle Scholar
Pettigrew, W. T. (1999). Potassium deficiency increases specific leaf weights and leaf glucose levels in field-grown cotton. Agronomy Journal 91, 962968.CrossRefGoogle Scholar
Pettigrew, W. T. & Meredith, W. R. Jr. (1997). Dry matter production, nutrient uptake, and growth of cotton as affected by potassium fertilization. Journal of Plant Nutrition 20, 531548.CrossRefGoogle Scholar
Pettigrew, W. T., Heitholt, J. J. & Meredith, W. R. Jr. (1996). Genotypic interactions with potassium and nitrogen in cotton of varied maturity. Agronomy Journal 88, 8993.CrossRefGoogle Scholar
Poss, R., Fardeau, J. C. & Saragoni, H. (1996). Sustainable agriculture in the tropics: the case of potassium under maize cropping in Togo. Nutrient Cycling in Agroecosystems 46, 205213.CrossRefGoogle Scholar
Pray, C. E., Huang, J., Hu, R. & Rozelle, S. (2002). Five years of Bt cotton in China – the benefits continue. The Plant Journal 31, 423430.CrossRefGoogle Scholar
Pujos, A. & Morard, P. (1997). Effects of potassium deficiency on tomato growth and mineral nutrition at the early production stage. Plant and Soil 189, 189196.CrossRefGoogle Scholar
Rama Rao, N. (1996). Potassium requirement for growth and its related processes determined by plant analysis in wheat. Plant and Soil 96, 115131.Google Scholar
Reddy, K. R. & Zhao, D. (2005). Interactive effects of elevated CO2 and potassium deficiency on the photosynthesis, growth, and biomass partitioning of cotton. Field Crops Research 94, 201213.CrossRefGoogle Scholar
Reddy, R. K., Hodges, H. F. & Varco, J. (2000). Potassium nutrition of cotton. Bulletin No. 1094. Mississippi, USA: Office of Agricultural Communications, Mississippi State University, Division of Agriculture.Google Scholar
Richard, L. (1974). La fertilisation potassique en relation avec les autres facteurs de production. Coton et Fibres Tropicales 29, 183198.Google Scholar
Rosenthal, W. D. & Gerik, T. J. (1991). Radiation use efficiency among cotton cultivars. Agronomy Journal 83, 655658.CrossRefGoogle Scholar
Sadras, V. O. (1996). Cotton responses to simulated insect damage: Radiation-use efficiency, canopy architecture and leaf nitrogen content as affected by loss of reproductive organs. Field Crops Research 48, 199208.CrossRefGoogle Scholar
Sadras, V. O. & Wilson, L. J. (1997). Growth analysis of cotton crops infested with spider mites: I. Light interception and radiation-use efficiency. Crop Science 37, 481491.CrossRefGoogle Scholar
SAS Institute Inc. (1997). User's Guide: Statistics. Cary, NY: SAS Institute.Google Scholar
Scherer, H. W., Schubert, S. & Mengel, K. (1982). Effect of potassium nutrition on growth rate, carbohydrate content and water retention in young wheat plants. Zeitschrift für Pflanzenernährung und Bodenkunde 145, 237245.CrossRefGoogle Scholar
Sinclair, T. R. & Muchow, R. C. (1999). Occam's Razor, radiation-use efficiency, and vapor pressure deficit. Field Crops Research 62, 239243.CrossRefGoogle Scholar
Triboulot, M. B., Pritchard, J. & Levy, G. (1997). Effects of potassium deficiency on cell water relations and elongation of tap and lateral roots of maritime pine seedlings. New Phytologist 135, 183190.CrossRefGoogle Scholar
Walker, D. J., Leigh, R. A. & Miller, A. J. (1996). Potassium homeostasis in vacuolated plant cells. Proceedings of the National Academy of Science USA 93, 1051010514.CrossRefGoogle ScholarPubMed
Wright, P. R. (1999). Premature senescence of cotton (Gossypium hirsutum L.) – predominantly a potassium disorder caused by an imbalance of source and sink. Plant and Soil 211, 231239.CrossRefGoogle Scholar
Xi, S., Lihua, R., Yongsong, Z., Qizhao, Y., Caixian, T. & Lianxiang, Q. (1989). Effect of potassium fertilizer application on physiological parameters and yield of cotton grown on a potassium deficient soil. Zeitschrift für Pflanzenernährung und Bodenkunde 152, 269272.CrossRefGoogle Scholar
Zhao, D., Oosterhuis, D. M. & Bednarz, C. W. (2001). Influence of potassium deficiency on photosynthesis, chlorophyll content, and chloroplast ultrastructure of cotton plants. Photosynthetica 39, 103109.CrossRefGoogle Scholar