Skip to main content Accessibility help

Predicting global geographical distribution of Lolium rigidum (rigid ryegrass) under climate change

  • E. CASTELLANOS-FRÍAS (a1), D. GARCIA DE LEÓN (a1) (a2), F. BASTIDA (a3) and J. L. GONZALEZ-ANDUJAR (a1) (a2)


Lolium rigidum L. (rigid ryegrass) is one of the most extensive and harmful weeds in winter cereal crops. A bioclimatic model for this species was developed using CLIMEX. The model was validated with records from North America and Oceania and used to assess the global potential distribution of L. rigidum under the current climate and under two climate change scenarios. Both scenarios represent contrasting temporal patterns of economic development and carbon dioxide (CO2) emissions. The projections under current climatic conditions indicated that L. rigidum does not occupy the full extent of the climatically suitable area available to it. Under future climate scenarios, the suitable potential area increases by 3·79% in the low-emission CO2 scenario and by 5·06% under the most extreme scenario. The model's projection showed an increase in potentially suitable areas in North America, Europe, South America and Asia; while in Africa and Oceania it indicated regression. These results provide the necessary knowledge for identifying and highlighting the potential invasion risk areas and for establishing the grounds on which to base the planning and management measures required.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Predicting global geographical distribution of Lolium rigidum (rigid ryegrass) under climate change
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Predicting global geographical distribution of Lolium rigidum (rigid ryegrass) under climate change
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Predicting global geographical distribution of Lolium rigidum (rigid ryegrass) under climate change
      Available formats


Corresponding author

*To whom all correspondence should be addressed. Email:


Hide All
Baker, R. H. A., Sansford, C. E., Jarvis, C. H., Cannon, R. J. C., MacLeod, A. & Walters, K. F. A. (2000). The role of climatic mapping in predicting the potential geographical distribution of non-indigenous pests under current and future climates. Agriculture, Ecosystems and Environment 82, 5771.
Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. (2012). Impacts of climate change on the future of biodiversity. Ecology Letters 15, 365377.
Bourdôt, G. W., Lamoureaux, S. L., Watt, M. S. & Kriticos, D. J. (2013). The potential global distribution of tall buttercup (Ranunculus acris ssp. acris): Opposing effects of irrigation and climate change. Weed Science 61, 230238.
CABI Centre for Agricultural Bioscience International (2014). Plantwise Knowledge Bank. Delémont, Switzerland: Plantwise. Available online from: (accessed 21 July 2015).
Castellanos-Frías, E., Garcia De Leon, D., Pujadas-Salva, A., Dorado, J. & Gonzalez-Andujar, J. L. (2014). Potential distribution of Avena sterilis L. in Europe under climate change. Annals of Applied Biology 165, 5361.
CHAH (2014). Australia's Virtual Herbarium. Canberra: Council of Heads of Australasian Herbaria. Available online from: (accessed 23 June 2015).
Chejara, V. K., Kriticos, D. J., Kristiansen, P., Sindel, B. M., Whalley, R. D. B. & Nadolny, C. (2010). The current and future potential geographical distribution of Hyparrhenia hirta . Weed Research 50, 174184.
Chen, S.-L., Li, D.-Z., Zhu, G., Wu, Z., Lu, S.-L., Liu, L., Wang, Z.-P., Sun, B.-X., Zhu, S.-D., Xia, N., Jia, L.-Z., Guo, Z., Chen, W., Chen, X., Yang, G., Phillips, S. M., Stapleton, C., Soreng, R. J., Aiken, S. G., Tzvelev, N. N., Peterson, P. M., Renvoize, S. A., Olonova, M. V. & Ammann, K. (2006). Poaceae . Flora of China Vol. 22, (Series Eds Wu, Z. G. & Raven, P. E.), Beijing & St Louis: Science Press & Missouri Botanical Garden Press.
Clements, D. R. & Ditommaso, A. (2011). Climate change and weed adaptation: can evolution of invasive plants lead to greater range expansion than forescasted? Weed Research 51, 227240.
Cocks, P. S. & Donald, C. M. (1973). The germination and establishment of two annual pasture grasses (Hordeum leporinum Link. and Lolium rigidum Gaud.). Australian Journal of Agricultural Research 24, 110.
Elith, J., Graham, C. H., Anderson, R. P., Dudík, M., Ferrier, S., Guisan, A., Hijmans, R. J., Huettmann, F., Leathwick, J. R., Lehmann, A., Li, J., Lohmann, L. G., Loiselle, B. A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J. M. M., Peterson, A. T., Phillips, S. J., Richardson, K., Scachetti-Pereira, R., Schapire, R. E., Soberón, J., Williams, S., Wisz, M. S. & Zimmermann, N. E. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129151.
EUROMED (2014). EuroMed PlantBase: The Information Resource for Euro-Mediterranean Plant Diversity. Berlin: EUROMED. Available online from: (accessed 23 June 2015).
FAOSTAT (2014). FAOSTAT. Rome: FAO. Available online from: (accessed 23 June 2015).
Fernández-Quintanilla, C., Barroso, J., Recasens, J., Sans, X., Torner, C. & Sanchez Del Arco, M. J. (2000). Demography of Lolium rigidum in winter barley crops: analysis of recruitment, survival and reproduction. Weed Research 40, 281291.
GBIF (2014). Global Biodiversity Information Facility: Free and Open Access to Biodiversity Data. Copenhagen: GBIF. Available online from: (accessed 23 June 2015).
Gill, G. S. & Holmes, J. E. (1997). Efficacy of cultural control methods for combating herbicide-resistant Lolium rigidum . Pesticide Science 51, Sp Iss, 352358.
Gonzalez-Andujar, J. L. (1995). Modelling the effects of climate change and climatic variability on crops at the site scale: effects on cereal weeds. In Climate Change and Agriculture in Europe: Assessment of Impacts and Adaptations (Eds Harrison, P. A., Butterfield, R. E. & Downing, T. E.), pp. 280285. Oxford, UK: University of Oxford.
Gramshaw, D. (1976). Temperature/light interactions and the effect of seed source on germination of annual ryegrass (Lolium rigidum Gaud.) seeds. Australian Journal of Agricultural Research 27, 779786.
Heap, I. (2014). International Survey of Herbicide Resistant Weeds. Online database available from (accessed 23 June 2015).
IPCC (2007). Summary for policymakers. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Eds Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M. & Miller, H. L.), pp. 118. Cambridge, UK: Cambridge University Press.
Izquierdo, J., Recasens, J., Fernández-Quintanilla, C. & Gill, G. (2003). Effects of crop and weed densities on the interactions between barley and Lolium rigidum in several Mediterranean locations. Agronomie 23, 529536.
Izquierdo, J., Bastida, F., Lezaun, J. M., Sánchez Del Arco, M. J. & Gonzalez-Andujar, J. L. (2013). Development and evaluation of a model for predicting Lolium rigidum emergence in winter cereal crops in the Mediterranean area. Weed Research 53, 269278.
Kirkby, K. A., Pratley, J. E., Hume, D. E., Faville, M. J., An, M. & Wu, H. (2011). Incidence of endophyte Neotyphodium occultans in Lolium rigidum from Australia. Weed Research 51, 261272.
Kriticos, D. J., Watt, M. S., Potter, K. J. B., Manning, L. K., Alexander, N. S. & Tallent-Halsell, N. (2010). Managing invasive weeds under climate change: considering the current and potential future distribution of Buddleja davidii . Weed Research 51, 8596.
Kriticos, D. J., Webber, B. L., Leriche, A., Ota, N., MacAdam, I., Bathols, J. & Scott, J. K. (2012). CliMond: global high-resolution historical and future scenario climate surfaces for bioclimatic modelling. Methods in Ecology and Evolution 3, 5364.
Lemerle, D., Verbeek, B. & Coombes, N. (1995). Losses in grain yield of winter crops from Lolium rigidum competition depend on crop species, cultivar and season. Weed Research 35, 503509.
McConnachie, A. J., Strathie, L. W., Mersie, W., Gebrehiwot, L., Zewdie, K., Abdurehim, A., Abrha, B., Araya, T., Asaregew, F., Assefa, F., Gebre-Tsadik, R., Nigatu, L., Tadesse, B. & Tana, T. (2011). Current and potential geographical distribution of the invasive plant Parthenium hysterophorus (Asteraceae) in eastern and southern Africa. Weed Research 51, 7184.
Michael, P. J., Owen, M. J. & Powles, S. B. (2010). Herbicide-resistant weed seeds contaminate grain sown in the western Australian grain belt. Weed Science 58, 466472.
Missouri Botanical Garden (2014). Tropicos. St. Louis, MO, USA: Missouri Botanical Garden. URL
Monaghan, N. M. (1980). The biology and control of Lolium rigidum as a weed of wheat. Weed Research 20, 117121.
NASS-USDA (2014). Census of Agriculture. Washington, D.C.: USDA. Available online from: (accessed 23 June 2015).
Ni, W. L., Li, Z. H., Chen, H. J., Wan, F. H., Qu, W. W., Zhang, Z. & Kriticos, D. J. (2012). Including climate change in pest risk assessment: the peach fruit fly, Bactrocera zonata (Diptera: Tephritidae). Bulletin of Entomological Research 102, 173183.
Owen, M. J., Martinez, N. J. & Powles, S. B. (2014). Multiple herbicide-resistant Lolium rigidum (annual ryegrass) now dominates across the Western Australian grain belt. Weed Research 54, 314324.
Perarnaud, V., Seguin, B., Malezieux, E., Deque, M. & Loustau, D. (2005). Agrometeorological research and applications needed to prepare agriculture and forestry to 21st century climate change. Climatic Change 70, 319340.
Rahmstorf, S., Cazenave, A., Church, J. A., Hansen, J. E., Keeling, R. F., Parker, D. E. & Somerville, R. C. J. (2007). Recent climate observations compared to projections. Science 316, 709.
Recasens, J., Taberner, A. & Izquierdo, J. (1997). Lolium rigidum Gaud. en cultivos de cereales. In Biología de las Malas Hierbas de España (Eds Sans, F. X. & Fernández-Quintanilla, C.), pp. 4964. Valencia, Spain: Phytoma-España.
Steadman, K. J., Ellery, A. J., Chapman, R., Moore, A. & Turner, N. C. (2004). Maturation temperature and rainfall influence seed dormancy characteristics of annual ryegrass (Lolium rigidum). Australian Journal of Agricultural Research 55, 10471057.
Sutherst, R. W. & Maywald, G. (2005). A climate model of the red imported fire ant, Solenopsis invicta Buren (Hymenoptera: Formicidae): implications for invasion of new regions, particularly Oceania. Environmental Entomology 34, 317335.
Sutherst, R. W., Maywald, G. F. & Kriticos, D. J. (2007). CLIMEX Version 3: User's Guide. Melbourne, Australia: Hearne Scientific Software.
Taberner, A. (2001). Biología de Lolium rigidum Gaud. Como Planta Infestante del Cultivo de Cebada. Aplicación al Establecimiento de Métodos de Control. Ph.D. Thesis, University of Lleida, Lleida, Spain.
Terrell, E. E. (1968). A Taxonomic Revision of the Genus Lolium . United States Department of Agriculture Technical Bulletin 1392. Washington, D.C.: USDA.
Tutin, T. G., Heywood, V. H., Burges, N. A., Moore, D. M., Valentine, D. H., Walters, S. M. & Webb, D. A. (1980). Flora Europaea. Vol. 5, Alismataceae to Orchidaceae (Monocotyledones). Cambridge, UK: Cambridge University Press.
USDA (2014). The PLANTS Database. Washington, DC: USDA. Available online from: (accessed 23 June 2015).
Walck, J. L., Hidayati, S. N., Dixon, K. W., Thompson, K. & Poschlod, P. (2011). Climate change and plant regeneration from seed. Global Change Biology 17, 21452161.
Ziska, L. H., Blumenthal, D. M., Runion, G. B., Hunt, E. R. & Diaz-Soltero, H. (2011). Invasive species and climate change: and agronomic perspective. Climate Change 105, 1342.
Type Description Title
Supplementary materials

Castellanos-Frias supplementary material
Castellanos-Frias supplementary material 1

 Excel (39 KB)
39 KB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed