Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T22:33:46.447Z Has data issue: false hasContentIssue false

Ovine ill-thrift in Nova Scotia:I. The possible regulation of the rumen flora in sheep by the fungal flora of permanent pasture

Published online by Cambridge University Press:  27 March 2009

D. Brewer
Affiliation:
Atlantic Regional Laboratory, National Research Council of Canada, Halifax, Nova Scotia, and Experimental Farm, Canada Department of Agriculture, Nappan, Nova Scotia
F. W. Calder
Affiliation:
Atlantic Regional Laboratory, National Research Council of Canada, Halifax, Nova Scotia, and Experimental Farm, Canada Department of Agriculture, Nappan, Nova Scotia
T. M. MacIntyre
Affiliation:
Atlantic Regional Laboratory, National Research Council of Canada, Halifax, Nova Scotia, and Experimental Farm, Canada Department of Agriculture, Nappan, Nova Scotia
A. Taylor
Affiliation:
Atlantic Regional Laboratory, National Research Council of Canada, Halifax, Nova Scotia, and Experimental Farm, Canada Department of Agriculture, Nappan, Nova Scotia

Summary

The growth of ewe lambs of the Shropshire breed declined and in some cases ceased at the end of July, when they grazed permanent pastures at the Experimental Farm, Nappan, Nova Scotia. This decline in growth coincided with a decrease of about three orders of magnitude in the numbers of viable rumen bacteria. At the end of July an increase of one to two orders of magnitude was observed in the numbers of viable fungi collected from the pastures. Lambs grazing pastures developed from tidal marsh of the Bay of Fundy had a better growth performance than lambs grazing adjacent pastures developed from mixed conifer-deciduous forest. The forest soils supported a greater fungal population than the marshland soil, and several species were found predominantly on the forest soil.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1971

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Brewer, D., Hannah, D. E., Rahman, R. & Taylor, A. (1967). The growth of Bacillus subtilis in media containing chetomin, sporidesmin, and gliotoxin. Can. J. Microbiol. 13, 1451.CrossRefGoogle ScholarPubMed
Brewer, D., Hannah, D. E. & Taylor, A. (1966). The biological properties of 3,6-epidithiadiketopiperazines. Inhibition of growth of Bacillus subtilis by gliotoxins, sporidesmins, and chetomin. Can. J. Microbiol. 12, 1187.CrossRefGoogle ScholarPubMed
Brewer, D., Jerram, W. A., Meiler, D. & Taylor, A. (1970). The toxicity of cochliodinol, an antibiotic metabolite of Chaetomium spp. Can. J. Microbiol. 16, 433.CrossRefGoogle ScholarPubMed
Brewer, D. & Taylor, A. (1969). Aspergillus fumigatus and Sporormia minima isolated from the rumen of sheep. J. gen. Microbiol. 59, 137.CrossRefGoogle ScholarPubMed
Brook, P. J. (1959). A volumetric spore trap for sampling pastures. N.Z. Jl agric. Res. 2, 690.CrossRefGoogle Scholar
Calder, F. W., Nicholson, J. W. G. & Cunningham, H. M. (1962). Grazing systems for ewes and lambs. Can. J. Anim. Sci. 42, 139.CrossRefGoogle Scholar
Cameron, C. D. T. & Hamilton, L. S. (1961). Effect of age at weaning of Shropshire lambs on weight gains and carcass score. Can. J. Anim. Sci. 41, 180.CrossRefGoogle Scholar
Christensen, C. M., Nelson, G. H., Mirocha, C. J., Bates, F. & Dorworth, C. E. (1966). Toxicity to rats of corn invaded by Chaetomium globosum. Appl. Microbiol. 14, 774.Google Scholar
Clarke, E. A. & Filmer, D. B. (1958). Studies in hogget rearing. I. General characteristics of hogget ill-thrift N.Z. Jl agric. Res. 1, 249.CrossRefGoogle Scholar
Done, J., Mortimer, P. H. & Taylor, A. (1960). Some observations on field cases of facial eczema: liver pathology and determinations of serum bilirubin, cholesterol, transaminase, and alkaline phosphatase. Res. vet. Sci. 1, 76.CrossRefGoogle Scholar
Fuelleman, R. F., Burlison, W. F. & Kammlade, W. G. (1951). Investigations on Agronomy Pasture Plots. Illinois Agric. Coll. Ext. AG 1497, 10 p.Google Scholar
Gochenaur, S. E. (1964). A modification of the immersion tube method for isolating soil fungi. Mycologia 56, 921.CrossRefGoogle Scholar
Hartley, W. J. & Grant, A. B. (1961). A review of selenium responsive diseases of New Zealand livestock. Fedn Proc. Fedn Am. Socs exp. Biol. 20, 679.Google Scholar
Hauser, D., Weber, H. P. & Sigg, H. P. (1970). Isolierung und Strukturaufklärung von Chaetocin. Helv. chim. Acta 53, 1061.CrossRefGoogle ScholarPubMed
Hungate, R. E. (1966). The Rumen and its Microbes. p. 27. New York: Academic Press.Google Scholar
Kurihara, Y., Eadie, J. M., Hobson, P. N. & Mann, S. O. (1968). Relationship between bacteria and ciliate protozoa in the sheep rumen. J. gen. Microbiol. 51, 267.CrossRefGoogle ScholarPubMed
Mann, S. O. (1968). An improved method for determining cellulolytic activity in anaerobic bacteria. J. appl. Bact. 31, 241.CrossRefGoogle Scholar
Marston, H. R. (1950). The organisation and work of the Division of Biochemistry and General Nutrition of C.S.I.R. Proc. R. Soc. B 137, 18.Google ScholarPubMed
Martin, J. P. (1950). Use of acid, rose bengal, and streptomycin in the plate method for estimating fungi. Soil Sci. 69, 215.CrossRefGoogle Scholar
di Menna, M. E. & Parle, J. N. (1970). Moulds on leaves of perennial ryegrass and white clover. N.Z. Jl agric. Res. 13, 51.CrossRefGoogle Scholar
Montegut, J. (1960). Value of the dilution method. In The Ecology of Soil Fungi, Ed. Burges, A., p. 43. Liverpool: Liverpool University Press.Google Scholar
Mortimer, P. H. & Taylor, A. (1962). The experimental intoxication of sheep with sporidesmin, a metabolic product of Pithomyces chartarum. I. Clini'cal observations and findings at post-mortem examinations. Res. vet. Sci. 3, 147.CrossRefGoogle Scholar
Pearson, H. A. (1969). Rumen microbial ecology in mule deer. Appl. Microbiol. 17, 819.CrossRefGoogle ScholarPubMed
Roberts, E. J. (1933). Sheep sickness of permanent pasture. J. Minist. Agric. Fish. 40, 337.Google Scholar
Ronaldson, J. W., Taylor, A., White, E. P. & Abraham, R. J. (1963). Sporidesmins. Part I. Isolation and characterisation of sporidesmin and sporidesmin B. J. Chem. Soc. 3172.Google Scholar
Santiago, A. A. & Neto, L. P. (1954). Estudo sôbre ovinos Suffolk em Sâo Paulo. O pèso ao nascer e o desenvolvimento ponderal. Bolm Ind. anim. 14, 19.Google Scholar
Trown, P. W. (1968). Antiviral activity of N.N'-dimethylepidithiapiperazinedione, a synthetic compound related to the gliotoxins LL-S88α and β, chetomin and the sporidesmins. Biochem. Biophys. Res. Commun. 33, 402.CrossRefGoogle Scholar
Tveit, M. (1955). Isolation of a chetomin-like substance from oat seedlings raised from seeds infested with Chaetomium cochliodes. Acta Agric. scand. 6, 13.CrossRefGoogle Scholar
Waksman, S. A. & Bugie, E. (1944). Chaetomin, a new antibiotic substance produced by Chaetomium cochliodes. J. Bact. 48, 527.CrossRefGoogle ScholarPubMed