Skip to main content Accessibility help

Organic and inorganic fertilization effects on DTPA-extractable Fe, Cu, Mn and Zn, and their concentration in the edible portion of crops

  • C. MAQUEDA (a1), J. F. HERENCIA (a2), J. C. RUIZ (a2) and M. F. HIDALGO (a1)


The application of organic composts to soil may affect the availability of micronutrients and their concentration in plants. The present field research study compared soil micronutrient extractability after 5 years of organic fertilization v. conventional inorganic fertilization. Iron (Fe), copper (Cu), manganese (Mn) and zinc (Zn) were extracted from soil using diethylene triamine pentaacetic acid (DTPA) and the data obtained were compared with the concentration of these micronutrients in the edible portion of the crop. The study was carried out on a loam soil classified as a Xerofluvent. The soil was fertilized with composted plant residues or with conventional inorganic fertilizer and all treatments were replicated four times in a randomized complete block design. In all cases a crop rotational system was applied. The use of organic fertilization resulted in a higher extractability for all the elements studied; however, the micronutrient content in the edible part of the crops was variable depending on the plant species and element. Crop yields depended on the type of crop rather than the type of soil fertilization. The present study showed that the use of plant compost and the elimination of synthetic fertilizers result in an increase of Fe, Cu, Mn and Zn extractability compared to soil treated with inorganic fertilization, which should provide long-term fertility benefits.


Corresponding author

*To whom all correspondence should be addressed. Email:


Hide All
Adiloğlu, A. & Kurşun, I. (2003). Determination of suitable chemical extraction methods for available zinc content of paddy soils at Thrace region in Turkey. Communication in Soil Science and Plant Analysis 34, 26072617.
Almas, A. R., Mcbride, M. B. & Singh, B. R. (2000). Solubility and lability of cadmium and zinc in two soils treated with organic matter. Soil Science 165, 250259.
Alvarez, J. M. & Gonzalez, D. (2006). Zinc transformations in neutral soil and zinc efficiency in maize fertilization. Journal of Agriculture and Food Chemistry 54, 94889495.
AOAC (Association of Official Analytical Chemistry) (1990). Official Methods of Analysis, 15th edn (Ed. Helrich, K.). Arlington, VA: AOAC.
Beltrán-González, F., Pérez-López, A. J., López-Nicolás, J. M. & Carbonell-Barrachina, A. A. (2008). Effects of agricultural practices on instrumental colour, mineral content, carotenoid composition, and sensory quality of mandarin orange juice, cv. Hernandina. Journal of the Science of Food and Agriculture 88, 17311738.
Biswas, C. R. & Benbi, D. K. (1997). Sustainable yield trends of irrigated maize and wheat in a long-term experiment on a loamy sand in semi-arid India. Nutrient Cycling in Agroecosystems 46, 225234.
Bolan, N. S. & Duraisamy, V. P. (2003). Role of inorganic and organic soil amendments on immobilisation and phytoavailability of heavy metals: a review involving specific case studies. Australian Journal of Soil Research 41, 533555.
Bulluck, L. R., Brosius, M., Evanylo, G. K. & Ristaino, J. B. (2002). Organic and synthetic amendments influence soil microbial, physical and chemical properties on organic and conventional farms. Applied Soil Ecology 19, 147160.
Clark, M. S., Horwath, W. S., Shennan, C. & Scow, K. M. (1998). Changes in soil chemical properties resulting from organic and low input farming practices. Agronomy Journal 90, 662671.
Dar, W. D. (2004). Macro-benefits from micronutrients for grey to green revolution in agriculture. In IFA International Symposium on Micronutrients, 23–25 February 2004, New Delhi, India (CD-ROM). Available online at: (verified 21 October 2010).
Demolon, A. & Leroux, D. (1952). Guide pour l´etude Experimental des sols. Paris, France: Gautier Villars.
Diaz-Barrientos, E., Madrid, L., Maqueda, C., Morillo, E., Ruiz-Cortes, E., Vasallote, E. & Carrillo, M. (2003). Copper and zinc retention by an organically amended soil. Chemosphere 50, 911917.
Fliessbach, A., Oberholzer, H. R., Gunst, L. & Mäder, P. (2007). Soil organic matter and biological soil quality indicators after 21 years of organic and conventional farming. Agriculture, Ecosystem and Environment 118, 273284.
Gadd, G. M. (2004). Microbial influence on metal mobility and application for bioremediation. Geoderma 122, 109119.
Gee, G. W. & Bauder, J. W. (1979). Particle-size analysis hydrometer. A simplified method for routine textural analysis and a sensitive test of measurement parameters. Soil Science Society of America Journal 43, 10041007.
Hargreaves, J. C., Adl, M. S., Warman, P. R. & Rupasinghe, H. P. V. (2008). The effects of organic and conventional nutrient amendments on strawberry cultivation: fruit yield and quality. Journal of the Science of Food and Agriculture 88, 26692675.
Herencia, J. F., Ruiz-Porras, J. C., Melero, S., Garcia-Galavis, P. A., Morillo, E. & Maqueda, C. (2007). Effect of organic versus mineral fertilization in soil fertility, macronutrients content in crops, and yield. Agronomy Journal 99, 973983.
Herencia, J. F., Ruiz, J. C., Morillo, E., Melero, S., Villaverde, J. & Maqueda, C. (2008 a). The effect of organic and mineral fertilization on micronutrient availability in soil. Soil Science 173, 6980.
Herencia, J. F., Ruiz, J. C., Melero, S., Garcia-Galavis, P. A. & Maqueda, C. (2008 b). A short-term comparison of organic versus conventional agriculture in a silty loam soil using two organic amendments. Journal of Agricultural Science, Cambridge 146, 677687.
Hesse, P. R. (1971). A Textbook of Soil Chemical Analysis. London: Murray.
Jackson, M. L. (1958). Soil Chemical Analysis. Englewood Cliffs, NJ: Prentice-Hall.
Jones, J. B., Wolf, B. & Mills, H. A. (1991). Factors affecting plant composition. In Plant Analysis Handbook (Eds Jones, J. B., Wolf, B. & Mills, H. A.), pp. 4588. Athens, GA: Micro-Macro Publishing Inc.
Kabata-Pendias, A. (2004). Soil-plant transfer of trace elements – an environmental issue. Geoderma 122, 143149.
Kabata-Pendias, A. & Pendias, H. (2001). Trace Elements in Soils and Plants, 3rd edn. New York: CRC Press.
Katyal, J. C. & Sharma, B. D. (1991). DTPA-extractable and total Zn, Cu, Mn and Fe in Indian soils and their association with some soil properties. Geoderma 49, 165179.
Lindsay, W. L. & Norvell, W. L. (1978). Development of DTPA soil test for Zinc, iron, manganese and copper. Soil Science Society of America Journal 42, 421428.
Lindsay, W. L. & Thorne, D. W. (1954). Bicarbonate ion and oxygen level as related to chlorosis. Soil Science 77, 271279.
Loneragan, J. F. (1981). Distribution and movement of copper in plants. In Copper in Soils and Plants (Eds Loneragan, J. F., Robson, A. D. & Graham, R. D.), pp. 165188. New York: Academic Press.
Mandal, L. N. & Mitra, R. R. (1982). Transformation of iron and manganese in rice soils under different moisture regimes and organic matter applications. Plant and Soil 69, 4556.
MAPA (1994). Métodos Oficiales de Análisis. Tomo III (Plantas, productos orgánicos fertilizantes, suelos, aguas, productos fitosanitarios, fertilizantes inorgánicos). Madrid, Spain: Ministerio de Agricultura, Pesca y Alimentación.
Maroto, J. V. (1995). Horticultura Herbácea Especial. Madrid, Spain: Mundi-Prensa.
Melero, S., Madejón, E., Herencia, J. F. & Ruiz, J. C. (2008). Effect of implementing organic farming on chemical and biochemical properties of an irrigated loam soil. Agronomy Journal 100, 136144.
Mengel, K. & Kirkby, E. A. (1982). Principles of Plant Nutrition. 3rd edn. Bern, Switzerland: International Potash Institute.
Mengel, K., Scherer, H. W. & Malissiovas, N. (1979). Chlorosis from the aspect of soil chemistry and vine nutrition. Mitteilungen Klosterneuburg 29, 151156.
Nube, M. & Voortman, R. L. (2006). Simultaneously Addressing Micronutrient Deficiencies in Soils, Crops, Animal and Human Nutrition: Opportunities for Higher Yields and Better Health. Staff Working Paper WP-06-02. Amsterdam: SOWVLU. Centre for World Food Studies.
Olsen, S. R., Cole, C. W., Watanabe, F. S. & Dean, L. A. (1954). Estimation of Available Phosphorous in Soils by Extraction with Sodium Bicarbonate. U.S. Department of Agriculture Circular 939. Washington, DC: Government Printing Office.
Perez-Rodríguez, J. L., Maqueda, C. & Justo, A. (1990). Mineralogy of soils containing pyrophyllite from southern Spain. Isolation and identification of the mineral. Soil Science 150, 671679.
Pomares, F., Olmos, J., Estela, M. & Tarazona, F. (1994). Fertilidad de la tierra y estado nutritivo de cítricos en cultivo ecológico. In Proceedings of the 1st Congreso de la Sociedad Española de Agricultura Ecológica (Ed. SEAE), pp. 238244. Toledo, Spain: Sociedad Española de Agricultura Ecológica.
Rengel, Z., Batten, G. D. & Crowley, D. E. (1999). Agronomic approaches for improving the micronutrient density in edible portions of field crops. Field Crops Research 60, 2740.
Rodriguez-Rubio, P., Morillo, E., Madrid, L., Undabeytia, T. & Maqueda, C. (2003). Retention of copper by a calcareous soil and its textural fractions: influence of amendment with two agroindustrial residues. European Journal of Soil Science 54, 401409.
Ruiz, J. C., Melero, S. & Herencia, J. F. (2000). Status microbiano del suelo en parcelas nutridas orgánica versus mineralmente. In Proceedings: IV Congreso de la Sociedad Española de Agricultura Ecológica (Ed. Fundación Cátedra Iberoamericana). Cordoba, Spain: Sociedad Española de Agricultura Ecológica.
Rupa, T. R. & Shukla, L. M. (1999). Comparison of four extractants and chemical fractions for assessing available zinc and copper in soils of India. Communication in Soil Science and Plant Analysis 30, 25792591.
Saeed, M. & Fox, R. L. (1977). Relations between suspension pH and zinc solubility in acid and calcareous soils. Soil Science 124, 199204.
Sharma, B. D., Mukhopaddhyay, S. S., Sidhu, P. S. & Katyal, J. C. (2000). Pedospheric attributes in distribution of total and DTPA-extractable Zn, Cu, Mn and Fe in Indo-Gangetic plains. Geoderma 96, 131151.
Singh, R. P. & Agrawal, M. (2007). Effects of sewage sludge amendment on heavy metal accumulation and consequent responses of Beta vulgaris plants. Chemosphere 67, 22292240.
Smilde, K. W., Koukoulakis, P. & Van Luit, B. (1974). Crop response to phosphate and lime on acid sandy soils high in zinc. Plant and Soil 41, 445457.
Soil Survey Staff. (1999). Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Survey. Agricultural Handbook 436. Washington, DC: U.S. Government Printing Office.
Tucker, B. M. (1954). The determination of exchangeable calcium and magnesium in carbonate soils. Australia Journal of Agricultural Research 5, 705715.
Van Der Watt, H. H., Sumner, M. E. & Cabrera, M. L. (1994). Bioavailability of copper manganese and zinc in poultry litter. Journal of Environmental Quality 23, 4349.
Warman, P. R. (2005). Soil fertility yield and nutrient contents of vegetable crops after 12 years of compost or fertilizer amendments. Biological Agriculture and Horticulture 23, 8596.
Warman, P. R. & Havard, K. A. (1997). Yield, vitamin and mineral contents of organically and conventionally grown carrots and cabbage. Agriculture, Ecosystem and Environment 61, 155162.
Warman, P. R. & Havard, K. A. (1998). Yield, vitamin and mineral contents of organically and conventionally grown potatoes and sweet corn. Agriculture, Ecosystem and Environment 68, 207216.

Organic and inorganic fertilization effects on DTPA-extractable Fe, Cu, Mn and Zn, and their concentration in the edible portion of crops

  • C. MAQUEDA (a1), J. F. HERENCIA (a2), J. C. RUIZ (a2) and M. F. HIDALGO (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed