Skip to main content Accessibility help

Nucleotide variation in the ovine KRT31 promoter region and its association with variation in wool traits in Merino-cross lambs

  • W. Chai (a1) (a2), H. Zhou (a1) (a2), H. Gong (a1) (a2), J. Wang (a2), Y. Luo (a2) and J. G. H. Hickford (a1) (a2)...


Keratins are the main structural proteins of wool fibres, and it is thought that variation in the keratins may affect wool fibre characteristics. Polymerase chain reaction-single stranded conformational polymorphism (PCR-SSCP) analyses were used to investigate four regions of the ovine keratin gene KRT31 including a portion of the promoter, the exon 1, exon 3 and exon 7 regions. Initially, in a screening panel of 300 New Zealand Romney, Merino and White Dorper sheep obtained from 26 farms, three, two, two and two PCR-SSCP banding patterns were observed for these four regions, respectively. The promoter region, the exon 1 and exon 3 regions contained two single nucleotide polymorphisms (SNPs) and the exon 7 region contained one SNP. The effect of the variation found in the promoter region on wool traits was subsequently investigated in 485 Southdown × Merino-cross lambs from seven sire-lines. The three variants identified in the original 300 sheep (named A, B and C) were observed with frequencies of 56, 29 and 15%, respectively. The presence of A and B had no significant effect on wool traits, but the presence of C was found to be associated with an increase in greasy fleece weight (GFW), clean fleece weight (CFW) and mean staple length (MSL). There was an effect of genotype on CFW and MSL, with BC sheep producing wool of higher CFW and MSL than AA, AB, AC and BB sheep. These results suggest that ovine KRT31 might be a useful candidate gene for improving wool traits.


Corresponding author

Author for correspondence: J. G. H. Hickford, E-mail:


Hide All
Byun, SO, Fang, Q, Zhou, H and Hickford, JG (2009) An effective method for silver-staining DNA in large numbers of polyacrylamide gels. Analytical Biochemistry 385, 174175.
Fong, YW and Zhou, Q (2001) Stimulatory effect of splicing factors on transcriptional elongation. Nature 414, 929933.
Furger, A, O'Sullivan, JM, Binnie, A, Lee, BA and Proudfoot, NJ (2002) Promoter proximal splice sites enhance transcription. Genes & Development 16, 27922799.
Gong, H, Zhou, H, Yu, Z, Dyer, J, Plowman, JE and Hickford, JGH (2011) Identification of the ovine keratin-associated protein KAP1-2 gene (KRTAP1-2). Experimental Dermatology 20, 815819.
Gong, H, Zhou, H, Hodge, S, Dyer, JM and Hickford, JGH (2015) Association of wool traits with variation in the ovine KAP1-2 gene in Merino cross lambs. Small Ruminant Research 124, 2429.
Gong, H, Zhou, H, Forrest, RHJ, Li, S, Wang, J, Dyer, JM, Luo, Y and Hickford, JGH (2016) Wool keratin-associated protein genes in sheep - a review. Genes 7, article number 24. doi: 10.3390/genes7060024.
Hediger, R, Ansari, HA and Stranzinger, GF (1991) Chromosome banding and gene localizations support extensive conservation of chromosome structure between cattle and sheep. Cytogenetics & Cell Genetics 57, 127134.
Heid, HW, Werner, E and Franke, WW (1986) The complement of native α-keratin polypeptides of hair-forming cells: a subset of eight polypeptides that differ from epithelial cytokeratins. Differentiation 32, 101119.
Heid, HW, Moll, I and Franke, WW (1988) Patterns of expression of trichocytic and epithelial cytokeratins in mammalian tissues. I. Human and bovine hair follicles. Differentiation 37, 137157.
Itenge-Mweza, TO, Forrest, RH, McKenzie, GW, Hogan, A, Abbott, J, Amoafo, O and Hickford, JGH (2007) Polymorphism of the KAP1.1, KAP1.3 and K33 genes in Merino sheep. Molecular and Cellular Probes 21, 338342.
Itenge, TO, Hickford, JGH, Forrest, RH, McKenzie, GW and Frampton, CM (2010) Association of variation in the ovine KAP1.1, KAP1.3 and K33 genes with wool traits. International Journal of Sheep and Wool Science 58, 119.
Kimchi-Sarfaty, C, Oh, JM, Kim, IW, Sauna, ZE, Calcagno, AM, Ambudkar, SV and Gottesman, MM (2007) A “silent” polymorphism in the MDR1 gene changes substrate specificity. Science 315, 525528.
Kwek, KY, Murphy, S, Furger, A, Thomas, B, O'Gorman, W, Kimura, H, Proudfoot, NJ and Akoulitchev, A (2002) U1 snRNA associates with TFIIH and regulates transcriptional initiation. Nature Structural Biology 9, 800805.
Liu, Y, Lyle, S, Yang, Z and Cotsarelis, G (2003) Keratin 15 promoter targets putative epithelial stem cells in the hair follicle bulge. Journal of Investigative Dermatology 121, 963968.
Lynch, MH, O'Guin, WM, Hardy, C, Mak, L and Sun, TT (1986) Acidic and basic hair/nail (“hard”) keratins: their colocalization in upper cortical and cuticle cells of the human hair follicle and their relationship to “soft” keratins. Journal of Cell Biology 103, 25932606.
Mortimer, S, Taylor, P and Atkins, K (2006) The Trangie QPLU$ selection lines: responses in clean fleece weight and fibre diameter on completion of ten rounds of selection. In Pope, CE (ed.) Trangie QPLU$ Merinos – Open Day 2006. Proceedings of the Trangie QPLU$ Open Day. Orange, Australia: NSW DPI, pp. 711.
Parsons, YM, Piper, LR and Cooper, DW (1994) Linkage relationships between keratin-associated protein (KRTAP) genes and growth hormone in sheep. Genomics 20, 500502.
Popescu, C and Höcker, H (2007) Hair - the most sophisticated biological composite material. Chemical Society Reviews 36, 12821291.
Rogers, GR, Hickford, JGH and Bickerstaffe, R (1993) Mspi RFLP in the gene for a type I intermediate filament wool keratin. Animal Genetics 24, 218.
Rogers, GR, Hickford, JGH and Bickerstaffe, R (1994) A potential QTL for wool strength located on ovine chromosome 11. Proceedings of the 5th World Congress on Genetics Applied to Livestock Production 21, 291294.
Roldan, DL, Dodero, AM, Bidinost, F, Taddeo, HR, Allain, D, Poli, MA and Elsen, JM (2010) Merino sheep: a further look at quantitative trait loci for wool production. Animal: An International Journal of Animal Bioscience 4, 13301340.
Sumner, RMW, Forrest, RHJ, Zhou, H, Henderson, HV and Hickford, JGH (2013) Association of the KRT33A (formerly KRT1.2) gene with live-weight and wool characteristics in yearing Perendale sheep. Proceedings of the New Zealand Society of Animal Production 73, 158164.
Tran, HTT, Takeshima, Y, Surono, A, Yagi, M, Wada, H and Matsuo, M (2005) A G-to-A transition at the fifth position of intron-32 of the dystrophin gene inactivates a splice-donor site both in vivo and in vitro. Molecular Genetics & Metabolism 85, 213219.
Yu, Z, Gordon, SW, Nixon, AJ, Bawden, CS, Rogers, MA, Wildermoth, JE, Maqbool, NJ and Pearson, AJ (2009) Expression patterns of keratin intermediate filament and keratin associated protein genes in wool follicles. Differentiation 77, 307316.
Zhou, H, Hickford, JGH and Fang, Q (2006) A two-step procedure for extracting genomic DNA from dried blood spots on filter paper for polymerase chain reaction amplification. Analytical Biochemistry 354, 159161.


Related content

Powered by UNSILO

Nucleotide variation in the ovine KRT31 promoter region and its association with variation in wool traits in Merino-cross lambs

  • W. Chai (a1) (a2), H. Zhou (a1) (a2), H. Gong (a1) (a2), J. Wang (a2), Y. Luo (a2) and J. G. H. Hickford (a1) (a2)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.