Skip to main content Accessibility help
×
Home

A method of screening for spike fertility in wheat

  • P. E. ABBATE (a1), A. C. PONTAROLI (a1) (a2), L. LÁZARO (a3) and F. GUTHEIM (a4)

Summary

Wheat grain yield is often associated with grain number/m2. Spike fertility (SF), i.e. the quotient between grain number and spike chaff dry weight, is a major component of grain number/m2 determination. Several methodologies have been proposed in the literature for field determination of SF, but they are tedious and expensive. Also, no comparison between methodologies has been done. The feasibility of using wheat SF as a selection criterion in a breeding programme or as a variable of interest in crop physiology studies depends largely upon the availability of a simpler and faster method for collecting and processing samples. Thus, the objective of the present study was to determine: (1) the association between SF calculated with the non-grain spike dry weight at anthesis (reference method) or at crop maturity, (2) the association between SF evaluated at the plot level (i.e. both non-grain spike dry weight and grain number determined as per area unit) and at the individual spike level and (3) the minimum number of individual spikes that should be sampled for the development of a screening method that can be applied in wheat breeding programmes or in crop physiology studies. Associations between variables were determined by correlation analysis of treatment means, and by a test of agreement for categorical rating (low, medium and high SF) between individual data of each variable. Four experiments (BY95, BC96, BC97 and ML07) were performed with five, ten, eight and eight wheat cultivars, respectively, under no environmental limitations, except for experiment ML07 which was not irrigated. In the first three experiments, SF was determined both at the beginning of grain filling and at maturity, in plot-size samples (0·8 m2/plot). In experiments BC96 and BC97, SF was determined both in plot-size samples and in individual spikes (five spikes per plot), at the beginning of grain filling. In experiment ML07, increasing numbers of individual spikes were sampled at maturity to assess SF. As a result: (1) a significant association (R2=0·78; P<0·001; d.f.=20) was detected between SF determined at the beginning of grain filling and at maturity, and the test of agreement for categorical rating showed that the classification of data into categories of SF was equivalent between methods (P>0·05); (2) when comparing SF determined in large plot-size samples v. in small samples of individual spikes, a good adjustment (R2=0·77; P<0·001; d.f.=6) was also observed, with no significant cultivar×experiment interaction and a good agreement between methods in the classification of data into categories of SF (P>0·05); and (3) increasing sample size from 5 to 40 spikes gradually decreased the average relative standard error of the mean (from 0·034 to 0·012, respectively). In conclusion, wheat SF can be determined in a fairly accurate way by sampling a small group of individual spikes at crop maturity, thereby allowing the evaluation of a large number of treatments in a timely fashion and the screening of breeding material from early generations.

Copyright

Corresponding author

*To whom all correspondence should be addressed. Email: pabbate@balcarce.inta.gov.ar, apontaroli@balcarce.inta.gov.ar

References

Hide All
Abbate, P. E., Andrade, F. H. & Culot, J. P. (1995). The effects of radiation and nitrogen on number of grains in wheat. Journal of Agricultural Science, Cambridge 124, 351360.
Abbate, P. E., Andrade, F. H., Culot, J. P. & Bindraban, P. S. (1997 b). Grain yield in wheat: Effects of radiation during spike growth period. Field Crops Research 54, 245257 [Erratum, 1998, 56, 317–318].
Abbate, P. E., Andrade, F. H., Lázaro, L., Bariffi, J. H., Berardocco, H. G., Inza, V. H. & Marturano, F. (1998). Grain yield increase in recent Argentine wheat cultivars. Crop Science 38, 12031209.
Abbate, P. E. & Lázaro, L. (2001). Ecofisiología del trigo candeal. In Manual de Trigo Candeal (Eds Chacra Experimental Integrada Barrow), pp. 2329. Tres Arroyos, Argentina: Chacra Experimental Integrada Barrow.
Abbate, P. E., Lázaro, L. & Andrade, F. H. (1997 a). ¿Es posible incrementar el número de granos por unidad de superficie en trigo?Explorando Altos Rendimientos en Trigo. INIA La Estanzuela, Colonia, Uruguay, October 20–23, 1997 (Eds Kohli, M. M. & Martino, D.), pp. 7190. Uruguay: CIMMYT-INIA.
Abbate, P. E., López, J. R., Brach, A. M., Gutheim, F. & Gonzalez, F. (2007). Fertilidad de las espigas de trigo en ambientes sub-potenciales. Workshop Internacional: Ecofisiología vegetal aplicada al estudio de la determinación del rendimiento y la calidad de los cultivos de granos. Mar del Plata, Buenos Aires, Argentina, September 6–7, 2007 (Eds Kruk, B. & Serrago, R.), pp. 23. Buenos Aires, Argentina: FAUBA.
Acreche, M. M., Briceño-Félix, G., Sánchez, J. A. M. & Slafer, G. A. (2008). Physiological bases of genetic gains in Mediterranean bread wheat yield in Spain. European Journal of Agronomy 28, 162170.
Annicchiarico, P. (2002). Genotype×Environment Interactions: Challenges and Opportunities for Plant Breeding and Cultivar Recommendations. Plant Production and Protection Paper 174. Rome: FAO.
Austin, R. B., Bingham, J., Blackwell, R. D., Evans, L. T., Ford, M. A., Morgan, C. L. & Taylor, M. (1980). Genetic improvements in winter wheat yield since 1900 and associated physiological changes. Journal of Agricultural Science, Cambridge 94, 675689.
Brooking, I. R. & Kirby, E. J. M. (1981). Interrelationships between stem and ear development in winter wheat: the effects of a Norin 10 dwarfing gene Gai/Rht2. Journal of Agricultural Science, Cambridge 97, 373381.
Fischer, R. A. (1984). Growth and yield of wheat. In Potential Productivity of Field Crops under Different Environments (Eds Smith, W. H. & Banta, S. J.) pp. 129154. Los Baños, Philippines: IRRI.
Fischer, R. A. (1985). Number of kernels in wheat crops and the influence of solar radiation and temperature. Journal of Agricultural Science, Cambridge 105, 447461.
Fischer, R. A. (2007). Understanding the physiological basis of yield potential in wheat. Journal of Agricultural Science, Cambridge 145, 99113.
Fischer, R. A. (2011). Wheat physiology: a review of recent developments. Crop and Pasture Science 62, 95114.
Fischer, R. A. & Stockman, Y. M. (1980). Kernel number per spike in wheat (Triticum aestivum L.). Responses to preanthesis shading. Australian Journal of Plant Physiology 7, 169180.
Fischer, R. A. & Stockman, Y. M. (1986). Increased kernel number in Norin 10-derived dwarf wheat: evaluation of the cause. Australian Journal of Plant Physiology 13, 767784.
Foulkes, M. J., Slafer, G. A., Davies, W. J., Berry, P. M., Sylvester-Bradley, R., Martre, P., Calderini, D. F., Griffiths, S. & Reynolds, M. P. (2011). Raising yield potential of wheat. III. Optimizing partitioning to grain while maintaining lodging resistance. Journal of Experimental Botany 62, 469486.
González, F. G., Slafer, G. A. & Miralles, D. J. (2005). Floret development and survival in wheat plants exposed to contrasting photoperiod and radiation environments during stem elongation. Functional Plant Biology 32, 189197.
González, F. G., Terrile, I. I. & Falcón, M. O. (2011). Spike fertility and duration of stem elongation as promising traits to improve potential grain number (and yield): variation in modern Argentinean wheats. Crop Science 51, 16931702.
Lázaro, L. & Abbate, P. E. (2011). Cultivar effects on relationship between grain number and photothermal quotient or spike dry weight in wheat. Journal of Agricultural Science, Cambridge, 14 September 2011. DOI:10.1017/S0021859611000736.
Lázaro, L., Abbate, P. E., Cogliati, D. H. & Andrade, F. H. (2010). Relationship between yield, growth and spike weight in wheat under phosphorus deficiency and shading. Journal of Agricultural Science, Cambridge 148, 8393.
Montgomery, D. C. (1997). Experiments with a single factor: the analysis of variance. Design and Analysis of Experiments, 5th edn (Ed. Montgomery, D. C.), pp. 60125. New York: John Wiley & Sons, Inc.
Reynolds, M. P., Rajaram, S. & Sayre, K. D. (1999). Physiological and genetic changes of irrigated wheat in the post-green revolution period and approaches for meeting projected global demand. Crop Science 39, 16111621.
Shearman, V. J., Sylvester-Bradley, R., Scott, R. & Foulkes, M. (2005). Physiological processes associated with wheat yield progress in the UK. Crop Science 45, 175185.
Slafer, G. A. (2007). Physiology of determination of major wheat yield components. In Wheat Production in Stressed Environments (Eds Buck, H. T., Nisi, J. E. & Salomón, N.), pp. 557565. Dordrecht, the Netherlands: Springer.
Slafer, G. A., Andrade, F. H. & Satorre, E. H. (1990). Genetic-improvement effects on pre-anthesis physiological attributes related to wheat grain-yield. Field Crops Research 23, 255263.
Stapper, M. & Fischer, R. A. (1990). Genotype, sowing date and plant spacing influence on high-yielding irrigated wheat in Southern New South Wales. II. Growth, yield and nitrogen use. Australian Journal of Agricultural Research 41, 10211041.
Sun, X. & Yang, Z. (2008). Generalized McNemar's test for homogeneity of the marginal distributions. In The SAS Global Forum 2008 Conference (Eds SAS Users Group International), Paper 382–2008, pp. 110. Cary, NC: SAS Institute Inc. Available online at http://www2.sas.com/proceedings/forum2008/382–2008.pdf (verified 25 November 2011).
Uebersax, J. S. (2006). User Guide for the MH Program (version 1.2). Available online from the Statistical Methods for Rate Agreement http://john-uebersax.com/stat/mh.htm (verified 25 November 2011).
Youssefian, S., Kirby, E. J. M. & Gale, M. D. (1992). Pleiotropic effects of the GA-insensitive Rht dwarfing genes in wheat. 2. Effects on leaf, stem, ear and floret growth. Field Crops Research 28, 191210.

A method of screening for spike fertility in wheat

  • P. E. ABBATE (a1), A. C. PONTAROLI (a1) (a2), L. LÁZARO (a3) and F. GUTHEIM (a4)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed