Skip to main content Accessibility help
×
Home

Mapping QTLs for protein and oil content in soybean by removing the influence of related traits in a four-way recombinant inbred line population

  • Xiyu Li (a1), Hong Xue (a1) (a2), Kaixin Zhang (a1), Wenbin Li (a1), Yanlong Fang (a1), Zhongying Qi (a1), Yue Wang (a1), Xiaocui Tian (a1), Jie Song (a1), Wenxia Li (a1) and Hailong Ning (a1)...
  • Please note a correction has been issued for this article.

Abstract

Protein content (PC) and oil content (OC) are important breeding traits of soybean [Glycine max (L.) Merr.]. Quantitative trait locus (QTL) mapping for PC and OC is important for molecular breeding in soybean; however, the negative correlation between PC and OC influences the accuracy of QTL mapping. In the current study, a four-way recombinant inbred lines (FW-RILs) population comprising 160 lines derived from the cross (Kenfeng14 × Kenfeng15) × (Heinong48 × Kenfeng19) was planted in eight different environments and PC and OC measured. Conditional and unconditional QTL analyses were carried out by interval mapping (IM) and inclusive complete IM based on linkage maps of 275 simple sequences repeat markers in a FW-RILs population. This analysis revealed 59 unconditional QTLs and 52 conditional QTLs among the FW-RILs. An analysis of additive effects indicated that the effects of 13 protein QTLs were not related to OC, whereas OC affected the expression of 13 and eight QTLs either partially or completely, respectively. Eight QTLs affecting OC were not influenced by PC, whereas six and 26 QTLs were partially and fully affected by PC, respectively. Among the QTLs detected in the current study, two protein QTLs and five oil QTLs had not been previously reported. These findings will facilitate marker-assisted selection and molecular breeding of soybean.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Mapping QTLs for protein and oil content in soybean by removing the influence of related traits in a four-way recombinant inbred line population
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Mapping QTLs for protein and oil content in soybean by removing the influence of related traits in a four-way recombinant inbred line population
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Mapping QTLs for protein and oil content in soybean by removing the influence of related traits in a four-way recombinant inbred line population
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Author for correspondence: Hailong Ning, E-mail: ninghailongneau@126.com

References

Hide All
Akond, M, Liu, S, Boney, M, Kantartzi, SK, Meksem, K, Bellaloui, N, Lightfoot, DA and Kassem, MA (2014) Identification of quantitative trait loci (QTL) underlying protein, oil, and five major fatty acids’ contents in soybean. American Journal of Plant Sciences 5, 158167.
Ao, Y and Xu, C (2006) Maximum likelihood method for mapping QTL in four-way cross design. Acta Agronomica Sinica 32, 5156.
Brummer, E, Graef, G, Orf, J, Wilcox, J and Shoemaker, R (1997) Mapping QTL for seed protein and oil content in eight soybean populations. Crop Science 37, 370378.
Chapman, A, Pantalone, VR, Ustun, A, Allen, FL, Landau-Ellis, D, Trigiano, RN and Gresshoff, PM (2003) Quantitative trait loci for agronomic and seed quality traits in an F2 and F4: 6 soybean population. Euphytica 129, 387393.
Chen, QS, Zhang, ZC, Liu, CY, Xin, DW, Qiu, HM, Shan, DP, Shan, CY and Hu, GH (2007) QTL analysis of major agronomic traits in soybean. Agricultural Sciences in China 6, 399405.
Chung, J, Babka, H, Graef, G, Staswick, P, Lee, D, Cregan, P, Shoemaker, R and Specht, J (2003) The seed protein, oil, and yield QTL on soybean linkage group I. Crop Science 43, 10531067.
Cregan, PB, Jarvik, T, Bush, AL, Shoemaker, RC, Lark, KG, Kahler, AL, Kaya, N, Vantoai, TT, Lohnes, D, Chung, J and Specht, JE (1999) An integrated genetic linkage map of the soybean genome. Crop Science 39, 14641490.
Csanádi, G, Vollmann, J, Stift, G and Lelley, T (2001) Seed quality QTLs identified in a molecular map of early maturing soybean. Theoretical and Applied Genetics 103, 912919.
Diers, BW, Keim, P, Fehr, WR and Shoemaker, RC (1992) RFLP analysis of soybean seed protein and oil content. Theoretical and Applied Genetics 83, 608612.
Eskandari, M, Cober, ER and Rajcan, I (2013 a) Genetic control of soybean seed oil: I. QTL and genes associated with seed oil concentration in RIL populations derived from crossing moderately high-oil parents. Theoretical and Applied Genetics 126, 483495.
Eskandari, M, Cober, ER and Rajcan, I (2013 b) Genetic control of soybean seed oil: II. QTL and genes that increase oil concentration without decreasing protein or with increased seed yield. Theoretical and Applied Genetics 126, 16771687.
Fasoula, VA, Harris, DK and Boerma, HR (2004) Validation and designation of quantitative trait loci for seed protein, seed oil, and seed weight from two soybean populations. Crop Science 44, 12181225.
Gai, J, Wang, Y, Wu, X and Chen, S (2007) A comparative study on segregation analysis and QTL mapping of quantitative traits in plants-with a case in soybean. Frontiers of Agriculture in China 1, 17.
Han, Y, Teng, W, Wang, Y, Zhao, X, Wu, L, Li, D and Li, W (2015) Unconditional and conditional QTL underlying the genetic interrelationships between soybean seed isoflavone, and protein or oil contents. Plant Breeding 134, 300309.
Hyten, DL, Pantalone, VR, Sams, CE, Saxton, AM, Landau-Ellis, D, Stefaniak, TR and Schmidt, ME (2004) Seed quality QTL in a prominent soybean population. Theoretical and Applied Genetics 109, 552561.
Jiao, CC, Huang, JX, Wang, YL, Zhang, XY, Xiong, HX, Ni, XY and Zhao, JY (2015) Genetic analysis of yield-associated traits by unconditional and conditional QTL in Brassica napus. Acta Agronomica Sinica 41, 14811489.
Jun, TH, Van, K, Kim, MY, Lee, SH and Walker, DR (2008) Association analysis using SSR markers to find QTL for seed protein content in soybean. Euphytica 162, 179191.
Kabelka, EA, Diers, BW, Fehr, WR, Leroy, AR, Baianu, IC, You, T, Neece, DJ and Nelson, RL (2004) Putative alleles for increased yield from soybean plant introductions. Crop Science 44, 784791.
Kim, HK, Kim, YC, Kim, ST, Son, BG, Choi, YW, Kang, JS, Park, YH, Cho, YS and Choi, IS (2010) Analysis of quantitative trait loci (QTLs) for seed size and fatty acid composition using recombinant inbred lines in soybean. Journal of Life Science 20, 11861192.
Lander, ES and Botstein, D (1989) Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121, 185199.
Lee, SH, Bailey, MA, Mian, MAR, Carter, TE, Shipe, ER, Ashley, DA, Parrott, WA, Hussey, RS and Boerma, HR (1996) RFLP loci associated with soybean seed protein and oil content across populations and locations. Theoretical and Applied Genetics 93, 649657.
Li, H, Ye, G and Wang, J (2007) A modified algorithm for the improvement of composite interval mapping. Genetics 175, 361374.
Li, H, Zhao, T, Wang, Y, Yu, D, Chen, S, Zhou, R and Gai, J (2011) Genetic structure composed of additive QTL, epistatic QTL pairs and collective unmapped minor QTL conferring oil content and fatty acid components of soybeans. Euphytica 182, 117. doi: 10.1007/s10681-011-0524-9.
Liang, HZ, Yu, YL, Wang, SF, Lian, Y, Wang, TF, Wei, YL, Gong, PT, Liu, XY, Fang, XJ and Zhang, MC (2010) QTL mapping of isoflavone, oil and protein contents in soybean (Glycine max L. Merr.). Agricultural Sciences in China 9, 11081116.
Liu, J, Niu, FA, Jiang, JH, Sun, C, Chen, L, Guo, Y, Fu, SH and Hong, DL (2012) Unconditional and conditional QTL mapping for yield and yield related traits in japonica rice in multi-environments. Chinese Journal of Rice Science 26, 144154.
Liu, S, Xue, H, Zhang, K, Wang, P, Su, D, Li, W, Xu, S, Zhang, J, Qi, Z, Fang, Y, Li, X, Wang, Y, Tian, X, Song, J, Wang, J, Yang, C, Jiang, S, Li, WX and Ning, H (2019) Mapping QTL affecting the vertical distribution and seed set of soybean [Glycine max (L.) Merr.] pods. The Crop Journal 7, 694706.
Lu, W, Wen, Z, Li, H, Yuan, D, Li, J, Zhang, H, Huang, Z, Cui, S and Du, W (2013) Identification of the quantitative trait loci (QTL) underlying water soluble protein content in soybean. Theoretical and Applied Genetics 126, 425433.
Mansur, LM, Lark, KG, Kross, H and Oliveira, A (1993) Interval mapping of quantitative trait loci for reproductive, morphological, and seed traits of soybean (Glycine max L.). Theoretical and Applied Genetics 86, 907913.
Mansur, LM, Orf, JH, Chase, K, Jarvik, T, Cregan, PB and Lark, KG (1996) Genetic mapping of agronomic traits using recombinant inbred lines of soybean. Crop Science 36, 13271336.
Mao, T, Jiang, Z, Han, Y, Teng, W, Zhao, X and Li, W (2013) Identification of quantitative trait loci underlying seed protein and oil contents of soybean across multi-genetic backgrounds and environments. Plant Breeding 132, 630641.
Moongkanna, J, Nakasathien, S, Novitzky, W, Kwanyuen, P, Sinchaisri, P and Srinives, P (2011) SSR markers linking to seed traits and total oil content in soybean. Thai Journal of Agricultural Science 44, 233241.
Ning, HL, Li, Q, Li, WB, Xue, H, Li, BY, Bai, XL, Zhuang, X and Li, WX (2015) Construction of linkage map based on a four-way recombinant inbred lines population. Soybean Science 34, 776781.
Ning, HL, Bai, XL, Li, WB, Xue, H, Zhuang, X, Li, WX and Liu, CY (2016) Mapping QTL protein and oil contents using population from four-way recombinant inbred lines for soybean (Glycine max L. Merr.). Acta Agronomica Sinica 42, 16201628.
Orf, JH, Chase, K, Jarvik, T, Mansur, LM, Cregan, PB, Adler, FR and Lark, KG (1999) Genetics of soybean agronomic traits: I. Comparison of three related recombinant inbred populations. Crop Science 39, 16421651.
Palomeque, L, Liu, LJ, Li, W, Hedges, B, Cober, ER and Rajcan, I (2009) QTL In mega-environments: II. Agronomic trait QTL co-localized with seed yield QTL detected in a population derived from a cross of high-yielding adapted × high-yielding exotic soybean lines. Theoretical and Applied Genetics 119, 429436.
Pathan, SM, Vuong, T, Clark, K, Lee, JD, Shannon, JG, Roberts, CA, Ellersieck, MR, Burton, JW, Cregan, PB, Hyten, DL, Nguyen, HT and Sleper, DA (2013) Genetic mapping and confirmation of quantitative trait loci for seed protein and oil contents and seed weight in soybean. Crop Science 53, 765774.
Qi, ZM, Han, X, Sun, YN, Wu, Q, Shan, DP, Du, XY, Liu, CY, Jiang, HW, Hu, GH and Chen, QS (2011 a) An integrated quantitative trait locus map of oil content in soybean, Glycine max (L.) Merr., generated using a meta-analysis method for mining genes. Agricultural Sciences in China 10, 16811692.
Qi, ZM, Wu, Q, Han, X, Sun, YN, Du, XY, Liu, CY, Jiang, HW, Hu, GH and Chen, QS (2011 b) Soybean oil content QTL mapping and integrating with meta-analysis method for mining genes. Euphytica 179, 499514.
Qi, Z, Han, X, Hou, M, Xin, D, Wang, Z, Zhu, R, Hu, Z, Jiang, H, Li, C, Liu, C, Hu, G and Chen, Q (2014 a) QTL analysis of soybean oil content under 17 environments. Canadian Journal of Plant Science 94, 245261.
Qi, Z, Hou, M, Han, X, Liu, C, Jiang, H, Xin, D, Hu, G and Chen, Q (2014 b) Identification of quantitative trait loci (QTLs) for seed protein concentration in soybean and analysis for additive effects and epistatic effects of QTL s under multiple environments. Plant Breeding 133, 499507.
Qiu, BX, Arelli, PR and Sleper, DA (1999) RFLP markers associated with soybean cyst nematode resistance and seed composition in a ‘Peking’ × ‘Essex’ population. Theoretical and Applied Genetics 98, 356364.
Reinprecht, Y, Poysa, VW, Yu, K, Rajcan, I, Ablett, GR and Pauls, KP (2006) Seed and agronomic QTL in low linolenic acid, lipoxygenase-free soybean (Glycine max (L.) Merrill) germplasm. Genome 49, 15101527.
Rossi, ME, Orf, JH, Liu, LJ, Dong, Z and Rajcan, I (2013) Genetic basis of soybean adaptation to North American vs. Asian mega-environments in two independent populations from Canadian × Chinese crosses. Theoretical and Applied Genetics 126, 18091823.
Shibata, M, Takayama, K, Ujiie, A, Yamada, T, Abe, J and Kitamura, K (2008) Genetic relationship between lipid content and linolenic acid concentration in soybean seeds. Breeding Science 58, 361366.
Specht, JE, Chase, K, Macrander, M, Graef, GL, Chung, J, Markwell, JP, Germann, M, Orf, JH and Lark, KG (2001) Soybean response to water. Crop Science 41, 493509.
Tajuddin, T, Watanabe, S, Yamanaka, N and Harada, K (2003) Analysis of quantitative trait loci for protein and lipid contents in soybean seeds using recombinant inbred lines. Breeding Science 53, 133140.
Tian, B, Liu, B, Zhu, ZL, Xie, QG and Tian, JC (2011) Conditional and unconditional QTL mapping of grain starch accumulation in wheat. Scientia Agricultura Sinica 44, 45514559.
Wang, X, Jiang, GL, Green, M, Scott, RA, Hyten, DL and Cregan, PB (2012) Quantitative trait locus analysis of saturated fatty acids in a population of recombinant inbred lines of soybean. Molecular Breeding 30, 11631179.
Wang, LL, Liu, CY, Jiang, ZF, Yao, BC, Shen, YR, Ma, ZZ, Xin, DW, Han, X, Tao Li, T, Hu, GH and Chen, QS (2014 a) Analysis of QTL underlying protein content of soybean in multi-environments. Chinese Journal of Oil Crop Sciences 36, 443449.
Wang, X, Jiang, GL, Green, M, Scott, RA, Song, Q, Hyten, DL and Cregan, PB (2014 b) Identification and validation of quantitative trait loci for seed yield, oil and protein contents in two recombinant inbred line populations of soybean. Molecular Genetics and Genomics 289, 935949.
Warrington, CV, Abdel-Haleem, H, Hyten, DL, Cregan, PB, Orf, JH, Killam, AS, Bajjalieh, N, Li, Z and Boerma, HR (2015) QTL for seed protein and amino acids in the Benning × Danbaekkong soybean population. Theoretical and Applied Genetics 128, 839850.
Xu, S (1996) Mapping quantitative trait loci using four-way crosses. Genetics Research 68, 175181.
Xu, S (1998) Iteratively reweighted least squares mapping of quantitative trait loci. Behavior Genetics 28, 341355.
Zhang, L, Huang, Z, Li, J, Hu, C and Dai, O (2004) Preliminary study of protein and oil contents of M type hybrid soybean. Chinese Journal of Oil Crop Sciences 26, 1721.
Zhang, H, Chen, J, Li, R, Deng, Z, Zhang, K, Liu, B and Tian, J (2016) Conditional QTL mapping of three yield components in common wheat (Triticum aestivum L.). The Crop Journal 4, 220228.
Zhu, J (1995) Analysis of conditional genetic effects and variance components in developmental genetics. Genetics 141, 16331639.

Keywords

Type Description Title
WORD
Supplementary materials

Li et al. supplementary material
Tables S1-S3 and Figure S1

 Word (1.2 MB)
1.2 MB

Mapping QTLs for protein and oil content in soybean by removing the influence of related traits in a four-way recombinant inbred line population

  • Xiyu Li (a1), Hong Xue (a1) (a2), Kaixin Zhang (a1), Wenbin Li (a1), Yanlong Fang (a1), Zhongying Qi (a1), Yue Wang (a1), Xiaocui Tian (a1), Jie Song (a1), Wenxia Li (a1) and Hailong Ning (a1)...
  • Please note a correction has been issued for this article.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.

A correction has been issued for this article: