Skip to main content Accessibility help
×
Home

Identifying factors limiting legume biomass production in a heterogeneous on-farm environment

  • S. DOUXCHAMPS (a1), E. FROSSARD (a1), N. UEHLINGER (a1), I. RAO (a2), R. VAN DER HOEK (a3), M. MENA (a4), A. SCHMIDT (a3) and A. OBERSON (a1)...

Summary

Multipurpose legumes provide a wide range of benefits to smallholder production systems in the tropics. The degree of system improvement after legume introduction depends largely on legume biomass production, which in turn depends on the legumes’ adaptation to environmental conditions. For Canavalia brasiliensis (canavalia), an herbaceous legume that has been recently introduced in the Nicaraguan hillsides, different approaches were tested to define the biophysical factors limiting biomass production on-farm, by combining information from topsoil chemical and physical properties, topography and soil profiles.

Canavalia was planted in rotation with maize during two successive years on 72 plots distributed over six farms and at contrasting landscape positions. Above-ground biomass production was similar for both years and varied from 448 to 5357 kg/ha, with an average of 2117 kg/ha. Topsoil properties, mainly mineral nitrogen (N; ranging 25–142 mg/kg), total N (Ntot; 415–2967 mg/kg), soil organic carbon (SOC; 3–38 g/kg) and pH (5·3–7·1), significantly affected canavalia biomass production but explained only 0·45 of the variation. Topography alone explained 0·32 of the variation in canavalia biomass production. According to soil profiles descriptions, the best production was obtained on profiles with a root aggregation index close to randomness, i.e. with no major obstacles for root growth. When information from topsoil properties, topography and soil profiles was combined through a stepwise multiple regression, the model explained 0·61 of the variation in canavalia biomass (P < 0·001) and included soil depth (0·5–1·70 m), slope position, amount of clay (19–696 kg/m2) and stones (7–727 kg/m2) in the whole profile, and SOC and N content in the topsoil. The linkages between topsoil properties, topography and soil profiles were further evaluated through a principal component analysis (PCA) to define the best landscape position for canavalia cultivation.

The three data sets generated and used in the present study were found to be complementary. The profile description demonstrated that studies documenting heterogeneity in soil fertility should also consider deeper soil layers, especially for deep-rooted plants such as canavalia. The combination of chemical and physical soil properties with soil profile and topographic properties resulted in a holistic understanding of soil fertility heterogeneity and shows that a landscape perspective must be considered when assessing the expected benefits from multipurpose legumes in hillside environments.

Copyright

Corresponding author

* To whom all correspondence should be addressed. Email: s.douxchamps@cgiar.org

References

Hide All
Agbenin, J. O. & Tiessen, H. (1995). Soil properties and their variations on two contiguous hillslopes in Northeast Brazil. Catena 24, 147161.
Alvarenga, R. C., da Costa, L. M., Moura Filho, W. & Regazzi, A. J. (1995). Potential of some green manure cover crops for conservation and recuperation of tropical soils. Pesquisa Agropecuaria Brasileira 30, 175185.
Anderson, J. M. & Ingram, J. S. I. (1993). Tropical Soil Biology and Fertility. A Handbook of Methods. Wallingford, UK: CAB International.
Anderson, M. J. (2004). CAP: a FORTRAN Computer Program for Canonical Analysis of Principal Coordinates. Auckland, New Zealand: Department of Statistics, University of Auckland.
Baddeley, A. & Turner, R. (2005). Spatstat: an R package for analyzing spatial point patterns. Journal of Statistical Software 12, 142.
Boddey, R. M., de Moraes Sá, J. C., Alves, B. J. R. & Urquiaga, S. (1997). The contribution of biological nitrogen fixation for sustainable agricultural systems in the tropics. Soil Biology and Biochemistry 29, 787799.
Bourget, S. J. & Kemp, J. G. (1957). Wet sieving apparatus for stability analysis of soil aggregates. Canadian Journal of Soil Science 37, 6061.
Bouyoucos, G. J. (1962). Hydrometer method improved for making particle size analyses of soils. Agronomy Journal 54, 464465.
Brady, N. C. & Weil, R. R. (2007). The Nature and Properties of Soils. 14th edn. Upper Saddle River, NJ: Pearson Education Addison Wesley.
Burle, M. L., Lathwell, D. J., Suhet, A. R., Bouldin, D. R., Bowen, W. T. & Resck, D. V. S. (1999). Legume survival during the dry season and its effect on the succeeding maize yield in acid savannah tropical soils. Tropical Agriculture 76, 217221.
Butler, J., Goetz, H. & Richardson, J. L. (1986). Vegetation and soil–landscape relationships in the North-Dakota Badlands. American Midland Naturalist 116, 378386.
Cantarella, H., van Raij, B. & Quaggio, J. A. (1998). Soil and plant analyses for lime and fertilizer recommendations in Brazil. Communications in Soil Science and Plant Analysis 29, 16911706.
Chambers, J. M., Freeny, A. E. & Heiberger, R. M. (1992). Analysis of variance; designed experiments. In Statistical Models in S (Eds Chambers, J. M. & Hastie, T. J.), pp. 145193. Pacific Grove, CA: Wadsworth & Brooks/Cole.
Cherr, C. M., Scholberg, J. M. S. & McSorley, R. (2006). Green manure approaches to crop production: A synthesis. Agronomy Journal 98, 302319.
CIAT (2008). Summary Annual Report 2008. SBA3: Improved Multipurpose Forages for the Developing World. Cali, Colombia: CIAT.
Daellenbach, G. C., Kerridge, P. C., Wolfe, M. S., Frossard, E. & Finckh, M. R. (2005). Plant productivity in cassava-based mixed cropping systems in Colombian hillside farms. Agriculture, Ecosystems and Environment 105, 595614.
de Costa, W. & Sangakkara, U. R. (2006). Agronomic regeneration of soil fertility in tropical Asian smallholder uplands for sustainable food production. Journal of Agricultural Science, Cambridge 144, 111133.
Dharmakeerthi, R. S., Kay, B. D. & Beauchamp, E. G. (2005). Factors contributing to changes in plant available nitrogen across a variable landscape. Soil Science Society of America Journal 69, 453462.
Douxchamps, S., Humbert, F. L., van der Hoek, R., Mena, M., Bernasconi, S. M., Schmidt, A., Rao, I., Frossard, E. & Oberson, A. (2010). Nitrogen balances in farmers fields under alternative uses of a cover crop legume: a case study from Nicaragua. Nutrient Cycling in Agroecosystems 88, 447462.
Douxchamps, S., Mena, M., van der Hoek, R., Benavidez, A. & Schmidt, A. (2011). Canavalia brasiliensis. Forraje que restituye la salud del suelo y mejora la nutrición del ganado. Managua, Nicaragua/Lindau, Switzerland: INTA/ CIAT/ETH. Available online at http://www.ciat.cgiar.org/ourprograms/Agrobiodiversity/forages/Pages/Publications.aspx (verified 10 October 2011).
Ebanyat, P., de Ridder, N., de Jager, A., Delve, R. J., Bekunda, M. A. & Giller, K. E. (2010). Impacts of heterogeneity in soil fertility on legume-finger millet productivity, farmers' targeting and economic benefits. Nutrient Cycling in Agroecosystems 87, 209231.
Gandah, M., Brouwer, J., Hiernaux, P. & Van Duivenbooden, N. (2003). Fertility management and landscape position: farmers' use of nutrient sources in western Niger and possible improvements. Nutrient Cycling in Agroecosystems 67, 5566.
Giller, K. E. (2001). Nitrogen Fixation in Tropical Cropping Systems. Wallingford, Oxon, UK: CABI.
Guretzky, J. A., Moore, K. J., Knapp, A. D. & Brummer, E. C. (2004). Emergence and survival of legumes seeded into pastures varying in landscape position. Crop Science 44, 227233.
Haydock, K. P. & Shaw, N. H. (1975). The comparative yield method for estimating dry matter yield of pasture. Australian Journal of Experimental Agriculture and Animal Husbandry 15, 663670.
INETER (2009). Banco de Datos Meteorológicos, 2007–2008. Managua, Nicaragua: Instituto Nicaragüense de Estudios Territoriales, Direccion de Meterología.
Iqbal, J., Read, J. J., Thomasson, A. J. & Jenkins, J. N. (2005). Relationships between soil-landscape and dryland cotton lint yield. Soil Science Society of America Journal 69, 872882.
Kravchenko, A. N. & Bullock, D. G. (2002). Spatial variability of soybean quality data as a function of field topography: I. Spatial data analysis. Crop Science 42, 804815.
Kravchenko, A. N., Bullock, D. G. & Boast, C. W. (2000). Joint multifractal analysis of crop yield and terrain slope. Agronomy Journal 92, 12791290.
Krom, M. D. (1980). Spectrophotometric determination of ammonia – a study of a modified Berthelot reaction using salicylate and dichloroisocyanurate. Analyst 105, 305316.
Kuntze, H., Niemann, J., Roeschmann, G. & Schwerdtfeger, G. (1981). Bodenkunde. Stuttgart: Ulmer.
Mackean, S. (1993). Manual de Analisis de Suelos y Plantas. Cali, Colombia: Centro Internacional de Agricultura Tropical (CIAT).
Maraux, F., Lafolie, F. & Bruckler, L. (1998). Comparison between mechanistic and functional models for estimating soil water balance: deterministic and stochastic approaches. Agricultural Water Management 38, 120.
Mardia, K. V., Kent, J. T. & Bibby, J. M. (1979). Multivariate Analysis. London: Academic Press.
Nelson, D. W. & Sommers, L. E. (1982). Total carbon, organic carbon and organic matter. In Methods of Soil Analysis. Part 2: Chemical and Microbiological Properties (Eds Page, A. L., Miller, R. H. & Keeney, D. R.), pp. 539580. Madison, WI: American Society of Agronomy.
Ojiem, J. O., Vanlauwe, B., de Ridder, N. & Giller, K. E. (2007). Niche-based assessment of contributions of legumes to the nitrogen economy of Western Kenya smallholder farms. Plant and Soil 292, 119135.
Olsen, S. R. & Sommers, L. E. (1982). Phosphorus. In Methods of Soil Analysis. Part 2: Chemical & Microbiological Properties (Eds Page, A. L., Miller, R. H. & Keeney, D. R.), pp. 403430. Madison, WI: American Society of Agronomy.
Oswald, A., de Haan, S., Sanchez, J. & Ccanto, R. (2009). The complexity of simple tillage systems. Journal of Agricultural Science, Cambridge 147, 399410.
Oyama, M. & Takehara, H. (1967). Revised Standard Soil Color Charts. Tokyo, Japan: Research Council of Agriculture, Forestry and Fisheries.
Pansak, W., Hilger, T. H., Dercon, G., Kongkaew, T. & Cadisch, G. (2008). Changes in the relationship between soil erosion and N loss pathways after establishing soil conservation systems in uplands of Northeast Thailand. Agriculture Ecosystems and Environment 128, 167176.
Peel, M. C., Finlayson, B. L. & McMahon, T. A. (2007). Updated world map of the Koppen-Geiger climate classification. Hydrology and Earth System Sciences 11, 16331644.
Peters, M., Franco, L. H., Schmidt, A. & Hincapié, B. (2002). Especies forrajeras multipropósito: opciones para productores de Centroamérica. CIAT publication no. 333. Cali, Colombia: Centro Internacional de Agricultura Tropical (CIAT).
Pinheiro, J. C. & Bates, D. M. (2000). Mixed-effects Models in S and S-PLUS. Berlin: Springer.
R Development Core Team (2007). R: a Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.
Richards, L. A. & Weaver, L. R. (1944). Moisture retention by some irrigated soils as related to soil-moisture tension. Journal of Agricultural Research 69, 215235.
Rockström, J. & de Rouw, A. (1997). Water, nutrients and slope position in on-farm pearl millet cultivation in the Sahel. Plant and Soil 195, 311327.
Rockström, J., Barron, J., Brouwer, J., Galle, S. & de Rouw, A. (1999). On-farm spatial and temporal variability of soil and water in pearl millet cultivation. Soil Science Society of America Journal 63, 13081319.
Ruhe, R. V. & Walker, P. H. (1968). Hillslope models and soil formations. I. Open systems. In Transactions of the 9th International Congress of Soil Science vol. 4 (Eds International Society of Soil Science), pp. 551560. Adelaide: International Society of Soil Science.
Said, A. N. & Tolera, A. (1993). The supplementary value of forage legume hays in sheep feeding: feed intake, nitrogen retention and body weight change. Livestock Production Science 33, 229237.
Salinas, J. G. & Garcia, R. (1985). Métodos quimicos para el analisis de suelos ácidos y plantas forrajeras. Cali, Colombia: Centro Internacional de Agricultura Tropical (CIAT).
Schmidt, A., Peters, M. & Schultze-Kraft, R. (2001). Desmodium heterocarpon (L.) DC. subsp ovalifolium (Prain) Ohashi. Rome: FAO. Available online at http://www.fao.org/ag/AGP/agpc/doc/Gbase/DATA/Pf000038.htm (verified 11 October 2011).
Stone, J. R., Gilliam, J. W., Cassel, D. K., Daniels, R. B., Nelson, L. A. & Kleiss, H. J. (1985). Effect of erosion and landscape position on the productivity of Piedmont soils. Soil Science Society of America Journal 49, 987991.
Tardieu, F. (1988). Analysis of the spatial variability of maize root density 1. Effect of wheel compaction on the spatial arrangement of roots. Plant and Soil 107, 259266.
Thelemann, R., Johnson, G., Sheaffer, C., Banerjee, S., Cai, H. W. & Wyse, D. (2010). The effect of landscape position on biomass crop yield. Agronomy Journal 102, 513522.
Tiessen, H. & Moir, J. O. (1993). Characterisation of available P by sequential extraction. In Soil Sampling and Methods of Analysis (Ed. Carter, M. R.), pp. 7586. Boca Raton, FL: CRC Press Inc.
Tittonell, P., Vanlauwe, B., Leffelaar, P. A., Rowe, E. C. & Giller, K. E. (2005). Exploring diversity in soil fertility management of smallholder farms in western Kenya – I. Heterogeneity at region and farm scale. Agriculture, Ecosystems and Environment 110, 149165.
Unkovich, M. J., Baldock, J. & Peoples, M. B. (2010). Prospects and problems of simple linear models for estimating symbiotic N-2 fixation by crop and pasture legumes. Plant and Soil 329, 7589.
Vanlauwe, B., Bationo, A., Chianu, J., Giller, K. E., Merckx, R., Mokwunye, U., Ohiokpehai, O., Pypers, P., Tabo, R., Shepherd, K. D., Smaling, E. M. A., Woomer, P. L. & Sanginga, N. (2010). Integrated soil fertility management operational definition and consequences for implementation and dissemination. Outlook on Agriculture 39, 1724.
Velasquez, E., Lavelle, P. & Andrade, M. (2007). GISQ, a multifunctional indicator of soil quality. Soil Biology and Biochemistry 39, 30663080.
Venables, W. N. & Ripley, B. D. (2002). Modern Applied Statistics with S. 4th edn. Berlin: Springer.
Wezel, A. (2006). Variation of soil and site parameters on extensively and intensively grazed hillslopes in semiarid Cuba. Geoderma 134, 152159.
Yoder, R. E. (1936). A direct method of aggregate analysis of soil and study of the physical nature of erosion losses. Journal of the American Society of Agronomy 28, 337351.
Zingore, S., Murwira, H. K., Delve, R. J. & Giller, K. E. (2007). Influence of nutrient management strategies on variability of soil fertility, crop yields and nutrient balances on smallholder farms in Zimbabwe. Agriculture, Ecosystems and Environment 119, 112126.
Type Description Title
PDF
Supplementary materials

Douxchamps Supplementary Material
Douxchamps Supplementary Material

 PDF (189 KB)
189 KB

Identifying factors limiting legume biomass production in a heterogeneous on-farm environment

  • S. DOUXCHAMPS (a1), E. FROSSARD (a1), N. UEHLINGER (a1), I. RAO (a2), R. VAN DER HOEK (a3), M. MENA (a4), A. SCHMIDT (a3) and A. OBERSON (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed