Skip to main content Accessibility help
×
Home

Factors contributing to maize and bean yield gaps in Central America vary with site and agroecological conditions

  • L. Eash (a1) (a2), S. J. Fonte (a2), K. Sonder (a1), N. Honsdorf (a1), A. Schmidt (a3), B. Govaerts (a1) and N. Verhulst (a1)...

Abstract

In Central America, population and food demands are rising rapidly, while yields of staple crops, maize and beans, remain low. To identify the main factors limiting production, field trials were established in six maize- and bean-producing regions in Guatemala, Honduras and El Salvador, representing about three-quarters of the maize-producing area. Potential yield-limiting factors were evaluated in 2017 and included: water stress, nutrient deficiency, pest and disease pressure, and/or inter-plant competition. When considering all sites, improved fertilization and pest and disease control significantly improved yields in maize by 11 and 16%, respectively but did not have a significant effect in beans. Irrigation had no effect due to good rainfall distribution over the growing season. Optimized planting arrangement resulted in an average 18% increase in maize yield, making it the most promising factor evaluated. The treatment and site combinations that increased both crop productivity and net profit included management changes that improved resource use efficiency. However, the contribution of each limiting factor to yield gaps varied across sites and no treatment was effective at increasing yield consistently across sites. Production constraints are highly dependent on local management practices and agroecological location. Therefore, public and private development efforts that seek to increase production should conduct multi-year, participatory experiments to identify limitations pertinent to the area in question. The next step is then to evaluate sustainable and profitable practices, to address those limitations and provide sound recommendations to farmers while decreasing the environmental and economic costs.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Factors contributing to maize and bean yield gaps in Central America vary with site and agroecological conditions
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Factors contributing to maize and bean yield gaps in Central America vary with site and agroecological conditions
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Factors contributing to maize and bean yield gaps in Central America vary with site and agroecological conditions
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Author for correspondence: N. Verhulst, E-mail: n.verhulst@cgiar.org

References

Hide All
Affholder, F, Poeydebat, C, Corbeels, M, Scopel, E and Tittonell, P (2013) The yield gap of major food crops in family agriculture in the tropics: assessment and analysis through field surveys and modelling. Field Crops Research 143, 106118.
Andrade, FH, Calviño, P, Cirilo, A and Barbieri, P (2002) Yield responses to narrow rows depend on increased radiation interception. Agronomy Journal 94, 975980.
Baldos, ULC and Hertel, TW (2014) Global food security in 2050: the role of agricultural productivity and climate change. Australian Journal of Agricultural and Resource Economics 58, 554570.
Barber, RG (1999) Land and Crop Management in the Hilly Terrains of Central America: Lessons Learned and Farmer-to-Farmer Transfer of Technologies. FAO Soil Bulletin 76. Rome, Italy: FAO.
Barbieri, PA, Echeverría, HE, Saínz Rozas, HR and Andrade, FH (2008) Nitrogen use efficiency in maize as affected by nitrogen availability and row spacing. Agronomy Journal 100, 10941100.
Bryla, DR (2011) Application of the ‘4R’ nutrient stewardship concept to horticultural crops: getting nutrients in the ‘right’ place. HortTechnology 21, 674682.
Cassman, KG (1999) Ecological intensification of cereal production systems: yield potential, soil quality, and precision agriculture. Proceedings of the National Academy of Sciences of the United States of America 96, 59525959.
Davis Instruments (2017) Vantage Vue: Console Manual. Hayward, CA, USA: Davis Instruments Corp.
Diaz, T and Burgeon, D (2016) Dry Corridor Central America. Situation Report. Rome, Italy: FAO.
Edmeades, GO, Bänziger, M, Mickelson, HR and Peña-Valdivia, CB (1997) Developing drought- and low N-tolerant maize. Proceedings of the Symposium, 25–29 March 1996, CIMMYT, El Batan, Mexico. Mexico, DF: CIMMYT.
Fischer, RA, Byerlee, D and Edmeades, GO (2009) Can technology deliver on the yield challenge to 2050? In Proceedings of the Expert Meeting on How to Feed the World in 2050. Rome, Italy: FAO, pp. 2426.
Foresight (2011) The Future of Food and Farming. Final Project Report. London, UK: The Government Office for Science.
George, T (2014) Why crop yields in developing countries have not kept pace with advances in agronomy. Global Food Security 3, 4958.
Grassini, P, van Bussel, LGJ, Van Wart, J, Wolf, J, Claessens, L, Yang, H, Boogaard, H, de Groote, H, van Ittersum, MK and Cassman, KG (2015) How good is good enough? Data requirements for reliable crop yield simulations and yield-gap analysis. Field Crops Research 177, 4963.
Hayman, P, Wilhelm, N, Alexander, B and Nidumolu, U (2010) Using temporal and spatial analogues to consider impacts and adaptation to climate change in the South Australian grain belt. In Dove, H and Culvenor, RA (eds), Food Security from Sustainable Agriculture Proceedings of the 15th Australian Agronomy Conference. Lincoln, New Zealand: Australian Society of Agronomy, pp. 1518.
Hengsdijk, H and Langeveld, H (2010) Yield Trends and Yield Gap Analysis of Major Crops in the World. Werkdocument 170. Wageningen, the Netherlands: Wettelijke Onderzoekstaken Natuur & Milieu.
Hock, J, Kranz, J and Renfro, BL (1995) Studies on the epidemiology of the tar spot disease complex of maize in Mexico. Plant Pathology 44, 490502.
Kearney, SP, Fonte, SJ, García, E, Chan, KMA, Siles, P and Smukler, SM (2019) Evaluating ecosystem service trade-offs and synergies from slash-and-mulch agroforestry systems in El Salvador. Ecological Indicators 105, 264278.
Lal, R (2015) Sustainable intensification for adaptation and mitigation of climate change and advancement of food security in Africa. In Lal, R, Singh, BR, Mwaseba, DL, Kraybill, D, Hansen, DO and Eik, LO (eds), Sustainable Intensification to Advance Food Security and Enhance Climate Resilience in Africa. Berlin, Germany: Springer, pp. 317.
Lenth, R (2018) emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.1. Vienna, Austria: R Foundation for Statistical Computing. Available at https://CRAN.R-project.org/package=emmeans (Accessed 15 July 2019).
Licker, R, Johnston, M, Foley, JA, Barford, C, Kucharik, CJ, Monfreda, C and Ramankutty, N (2010) Mind the gap: how do climate and agricultural management explain the ‘yield gap’ of croplands around the world? Global Ecology and Biogeography 19, 769782.
Lobell, DB, Cassman, KG and Field, CB (2009) Crop yield gaps: their importance, magnitudes, and causes. Annual Review of Environment and Resources 34, 179204.
Norse, D, Lu, Y and Huang, J (2012) China's Food Security: Challenges and Responses in a Global Context. Brussels, Belgium: European Union – Euro-China Research Advice Network.
R Core Team (2017) R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. Available at https://www.R-project.org/ (Accessed 15 July 2019).
Rosenzweig, C, Iglesias, A, Yang, XB, Epstein, PR and Chivian, E (2001) Climate change and extreme weather events; implications for food production, plant diseases, and pests. Global Change and Human Health 2, 90104.
Sangoi, L (2001) Understanding plant density effects on maize growth and development: an important issue to maximize grain yield. Ciência Rural 31, 159168.
Scharf, PC, Wiebold, WJ and Lory, JA (2002) Corn yield response to nitrogen fertilizer timing and deficiency level. Agronomy Journal 94, 435441.
Tilman, D, Cassman, KG, Matson, PA, Naylor, R and Polasky, S (2002) Agricultural sustainability and intensive production practices. Nature 418, 671677.
Tittonell, P and Giller, KE (2013) When yield gaps are poverty traps: the paradigm of ecological intensification in African smallholder agriculture. Field Crops Research 143, 7690.
Turmel, M-S, Speratti, A, Baudron, F, Verhulst, N and Govaerts, B (2015) Crop residue management and soil health: a systems analysis. Agricultural Systems 134, 616.
van Ittersum, MK and Rabbinge, R (1997) Concepts in production ecology for analysis and quantification of agricultural input-output combinations. Field Crops Research 52, 197208.
van Ittersum, MK, Cassman, KG, Grassini, P, Wolf, J, Tittonell, P and Hochman, Z (2013) Yield gap analysis with local to global relevance – a review. Field Crops Research 143, 417.
Wei, SS, Wang, XY and Dong, ST (2014) Effects of row spacing on canopy structure and grain-filling characteristics of high-yield summer maize. Chinese Journal of Applied Ecology 25, 441450.
You, L, Wood, S and Wood-Sichra, U (2009) Generating plausible crop distribution maps for Sub-Saharan Africa using a spatially disaggregated data fusion and optimization approach. Agricultural Systems 99, 126140.

Keywords

Factors contributing to maize and bean yield gaps in Central America vary with site and agroecological conditions

  • L. Eash (a1) (a2), S. J. Fonte (a2), K. Sonder (a1), N. Honsdorf (a1), A. Schmidt (a3), B. Govaerts (a1) and N. Verhulst (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed