Skip to main content Accessibility help
×
Home

The effects of three total mixed rations with different concentrate to maize silage ratios and different levels of microalgae Chlorella vulgaris on in vitro total gas, methane and carbon dioxide production

  • A. E. KHOLIF (a1), M. M. Y. ELGHANDOUR (a2), A. Z. M. SALEM (a2), A. BARBABOSA (a2), O. MÁRQUEZ (a3) and N. E. ODONGO (a4)...

Summary

The aim of the current study was to assess the effects of adding Chlorella vulgaris algae at different levels on in vitro gas production (GP) of three total mixed rations (TMR) with different concentrate (C): maize silage (S) ratios (25C : 75S, 50C : 50S, 75C : 25S). Chlorella vulgaris was added at 0, 20, 40 and 80 mg/g dry matter (DM) of the TMR and total gas, methane (CH4) and carbon dioxide (CO2) production were recorded after 2, 4, 6, 8, 10, 12, 24 and 48 h of incubation in three runs. Increasing concentrate portion in the TMR linearly increased the asymptotic GP and decreased the rate of GP without affecting the lag time. Addition of C. vulgaris at 20 mg/g DM to the 25C : 75S TMR increased the asymptotic GP, CH4, CO2 and GP at 48 h. Addition of C. vulgaris to the 50C : 50S TMR decreased the asymptotic GP and GP at 48 h. Higher CH4 production was observed at 48 h of incubation when C. vulgaris was included at (per g DM): 20 mg for the 25C : 75S ration, 40 mg for the 50C : 50S ration and 80 mg for the 75C : 25S ration. Inclusion of C. vulgaris linearly increased CH4 production for the 50C : 50S ration and increased CO2 production at 10 and 12 h of incubation for the 50C : 50S ration, whereas 20 and 40 mg C. vulgaris/g DM of the 75C : 25S TMR decreased CO2 production. The 25C : 75S TMR had the highest in vitro DM disappearance with C. vulgaris addition. Chlorella vulgaris addition was more effective with rations high in fibre content than those high in concentrates. It can be concluded that the optimal level of C. vulgaris addition was 20 mg/g DM for improved ruminal fermentation of the 25C : 75S TMR.

Copyright

Corresponding author

*To whom all correspondence should be addressed. Email: asalem70@yahoo.com

References

Hide All
Anele, U. Y., Yang, W. Z., McGinn, P. J., Tibbetts, S. M. & McAllister, T. A. (2016). Ruminal in vitro gas production, dry matter digestibility, methane abatement potential and fatty acid biohydrogenation of six species of microalgae. Canadian Journal of Animal Science 96, 354363.
AOAC (1997). Official Methods of Analysis of the Association of Official Analytical Chemists, Vol. 1, 16th edn. Washington, DC: Association of Official Analytical Chemists.
Becker, E. W. (2007). Micro-algae as a source of protein. Biotechnology Advances 25, 207210.
Blümmel, M., Steingass, H. & Becker, K. (1997). The relationship between in vitro gas production, in vitro microbial biomass yield and 15N incorporation and its implications for the prediction of voluntary feed intake of roughages. British Journal of Nutrition 77, 911921.
Carro, M. D. & Miller, E. L. (1999). Effect of supplementing a fibre basal diet with different nitrogen forms on ruminal fermentation and microbial growth in an in vitro semi-continuous culture system (RUSITEC). British Journal of Nutrition 82, 149157.
Chen, C. Y., Zhao, X. Q., Yen, H. W., Ho, S. H., Cheng, C. L., Lee, D. J., Bai, F. W. & Chang, J. S. (2013). Microalgae-based carbohydrates for biofuel production. Biochemical Engineering Journal 78, 110.
Drewery, M. L., Sawyer, J. E., Pinchak, W. E. & Wickersham, T. A. (2014). Effect of increasing amounts of postextraction algal residue on straw utilization in steers. Journal of Animal Science 92, 46424649.
Dubois, B., Tomkins, N. W., Kinley, R. D., Bai, M., Seymour, S., Paul, N. A. & De Nys, R. (2013). Effect of tropical algae as additives on rumen in vitro gas production and fermentation characteristics. American Journal of Plant Sciences 4, 3443.
Elghandour, M. M. Y., Vázquez-Chagoyán, J. C., Salem, A. Z. M., Kholif, A. E., Martínez-Castañeda, J. S., Camacho, L. M. & Cerrillo-Soto, M. A. (2014). Effects of Saccharomyces cerevisiae at direct addition or pre-incubation on in vitro gas production kinetics and degradability of four fibrous feeds. Italian Journal of Animal Science 13, 295301.
Elghandour, M. M. Y., Kholif, A. E., Salem, A. Z. M., Montes De Oca, R., Barbabosa, A., Mariezcurrena, M. & Olafadehan, O. A. (2016 a). Addressing sustainable ruminal methane and carbon dioxide emissions of soybean hulls by organic acid salts. Journal of Cleaner Production 135, 194200.
Elghandour, M. M. M. Y., Kholif, A. E., Bastida, A. Z., Martínez, D. L. P. & Salem, A. Z. M. (2015 a). In vitro gas production of five rations of different maize silage and concentrate ratios influenced by increasing levels of chemically characterized extract of Salix babylonica . Turkish Journal of Veterinary and Animal Sciences 39, 186194.
Elghandour, M. M. M. Y., Kholif, A. E., Márquez-Molina, O., Vázquez-Armijo, J. F., Puniya, A. K. & Salem, A. Z. M. (2015 b). Influence of individual or mixed cellulase and xylanase mixture on in vitro rumen gas production kinetics of total mixed rations with different maize silage and concentrate ratios. Turkish Journal of Veterinary and Animal Science 39, 435442.
Elghandour, M. M. M. Y., Kholif, A. E., Hernandez, J., Mariezcurrena, M. D., Lopez, S., Camacho, L. M., Marquez, O. & Salem, A. Z. M. (2016 b). Influence of the addition of exogenous xylanase with or without pre-incubation on the in vitro ruminal fermentation of three fibrous feeds. Czech Journal of Animal Science 61, 262272.
Fievez, V., Boeckaert, C., Vlaeminck, B., Mestdagh, J. & Demeyer, D. (2007). In vitro examination of DHA-edible micro-algae. 2. Effect on rumen methane production and apparent degradability of hay. Animal Feed Science and Technology 136, 8095.
Fiogbe, E. D., Micha, J. C. & Van Hove, C. (2004). Use of a natural aquatic fern, Azolla microphylla, as a main component in food for the omnivorous–phytoplanktonophagous tilapia, Oreochromis niloticus L. Journal of Applied Ichthyology 20, 517520.
France, J., Dijkstra, J., Dhanoa, M. S., López, S. & Bannink, A. (2000). Estimating the extent of degradation of ruminant feeds from a description of their gas production profiles observed in vitro: derivation of models and other mathematical considerations. British Journal of Nutrition 83, 143150.
Garcia-Camacho, F., Gallardo-Rodriquez, J., Sanchez-Miron, A., Ceron-Gracia, M. C., Belarbi, E. H., Chisti, Y. & Molina-Grima, E. (2007). Biotechnological significance of toxic marine dinoflagellates. Biotechnology Advances 25, 176194.
Goel, G. & Makkar, H. P. S. (2012). Methane mitigation from ruminants using tannins and saponins, a status review. Tropical Animal Health Production 44, 729739.
Goering, M. K. & Van Soest, P. J. (1970). Forage Fiber Analysis (Apparatus, Reagents, Procedures and Some Applications). Agriculture Handbook, No. 379. Washington, DC: Agricultural Research Service, USDA.
Halama, D. (1990). Single cell protein. In Nonconventional Feedstuffs in the Nutrition of Farm Animals (Ed. Boda, K.), pp. 3449. New York: Elsevier Science Publishing Company, Inc.
Hamid, P., Akbar, T., Hossein, J. & Ali, M. G. (2007). Nutrient digestibility and gas production of some tropical feeds used in ruminant diets estimated by the in vivo and in vitro gas production techniques. American Journal of Animal and Veterinary Sciences 2, 108113.
Hudek, K., Davis, L. C., Ibbini, J. & Erickson, L. (2014). Commercial products from algae. In Algal Biorefineries (Eds Bajpai, R., Prokop, A. & Zappi, M.), pp. 275295. New York: Springer Science.
Hughes, A. D., Kelly, M. S., Black, K. D. & Stanley, M. S. (2012). Biogas from microalgae: is it time to revisit the idea? Biotechnology for Biofuels 5, 86. doi: 10.1186/1754-6834-5-86.
Iwamoto, H. (2004). Industrial production of microalgal cell-mass and secondary products – major industrial species. Chlorella. In Handbook of Microalgal Culture: Biotechnology and Applied Phycology (Ed. Richmond, A.), pp. 255263. UK: Blackwell Science.
Janczyk, P., Langhammer, M., Renne, U., Guiard, V. & Souffrant, W. B. (2006). Effect of feed supplementation with Chlorella vulgaris powder on mice reproduction. Archiva Zootechnica 9, 122134.
Janczyk, P., Halle, B. & Souffrant, W. B. (2009). Microbial community composition of the crop and ceca contents of laying hens fed diets supplemented with Chlorella vulgaris . Poultry Science 88, 23242332.
Kholif, A. E., Morsy, T. A., Matloup, O. H., Anele, U. Y., Mohamed, A. G. & El-Sayed, A. B. (in press). Dietary Chlorella vulgaris microalgae improves feed utilization, milk production and concentrations of conjugated linoleic acids in the milk of Damascus goats. Journal of Agricultural Science, Cambridge. doi: 10.1017/S0021859616000824.
Kotrbáček, V., Doubek, J. & Doucha, J. (2015). The chlorococcalean alga Chlorella in animal nutrition: a review. Journal of Applied Phycology 27, 21732180.
Kumar, S., Dagar, S. S., Sirohi, S. K., Upadhyay, R. C. & Puniya, A. K. (2013). Microbial profiles, in vitro gas production and dry matter digestibility based on various ratios of roughage to concentrate. Annals of Microbiology 63, 541545.
Lum, K. K., Kim, J. & Lei, X. G. (2013). Dual potential of microalgae as a sustainable biofuel feedstock and animal feed. Journal of Animal Science and Biotechnology 4, 5360.
Martin, C., Morgavi, D. P. & Doreau, M. (2010). Methane mitigation in ruminants: from microbe to the farm scale. Animal 4, 351365.
Menke, K. H. & Steingass, H. (1988). Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal Research and Development 28, 755.
Morgavi, D. P., Forano, E., Martin, C. & Newbold, C. J. (2010). Microbial ecosystem and methanogenesis in ruminants. Animal 4, 10241036.
National Standards of People's Republic of China (2010). National Food Safety Standard. Beijing, China: Ministry of Health of the People's Republic of China.
NRC (2001). Nutrient Requirements of Dairy Cattle, 7th revised edn. Washington, DC: National Academies Press.
Pereira, H., Barreira, L., Figueiredo, F., Custódio, L., Vizetto-Duarte, C., Polo, C., Rešek, E., Engelen, A. & Varela, J. (2012). Polyunsaturated fatty acids of marine macroalgae: potential for nutritional and pharmaceutical applications. Marine Drugs 10, 19201935.
Priyadarshani, I. & Rath, B. (2012). Commercial and industrial applications of micro algae – a review. Journal of Algal Biomass Utilization 3, 89100.
Rodriguez, M. P., Mariezcurrena, M. D., Mariezcurrena, M. A., Lagunas, B. C., Elghandour, M. M. M. Y., Kholif, A. M., Kholif, A. E., Almaráz, E. M. & Salem, A. Z. M. (2015). Influence of live cells or cells extract of Saccharomyces cerevisiae on in vitro gas production of a total mixed ration. Italian Journal of Animal Science 14, 590595.
SAS Institute (2002). SAS User's Guide: Statistics. Version 9.0. Cary, NC: SAS Institute.
Sayre, R. (2010). Microalgae: the potential for carbon capture. Bioscience 60, 722727.
Stewart, C. S., Flint, H. J. & Byrant, M. P. (1997). The rumen bacteria. In The Rumen Microbial Ecosystem (Eds Hobson, P. N. & Stewart, C. S.), pp. 1055. New York, NY: Blackie Academic and Professional.
Theodorou, M. K., Williams, B. A., Dhanoa, M. S., McAllan, A. B. & France, J. (1994). A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Animal Feed Science and Technology 48, 185197.
Tibbetts, S. M., MacPherson, T., McGinn, P. J. & Fredeen, A. H. (in press). In vitro digestion of microalgal biomass from freshwater species isolated in Alberta, Canada for monogastric and ruminant animal feed applications. Algal Research. doi: 10.1016/j.algal.2016.01.016.
Tibbetts, S. M., Whitney, C. G., MacPherson, M. J., Bhatti, S., Banskota, A. H., Stefanova, R. & McGinn, P. J. (2015). Biochemical characterization of microalgal biomass from freshwater species isolated in Alberta, Canada for animal feed applications. Algal Research 11, 435447.
Tsiplakou, E., Abdullah, M. A. M., Skliros, D., Chatzikonstantinou, M., Flemetakis, E., Labrou, N. & Zervas, G. (2016). The effect of dietary Chlorella vulgaris supplementation on micro-organism community, enzyme activities and fatty acid profile in the rumen liquid of goats. Journal of Animal Physiology and Animal Nutrition. Early view article: doi: 10.1111/jpn.12521.
Vallejo, L. H., Salem, A. Z. M., Kholif, A. E., Elghangour, M. M. Y., Fajardo, R. C., Rivero, N., Bastida, A. Z. & Mariezcurrena, M. D. (2016). Influence of cellulase or xylanase on the in vitro rumen gas production and fermentation of corn stover. Indian Journal of Animal Sciences 86, 7074.
Van Soest, P. J., Robertson, J. B. & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74, 35833597.
Walker, D. A. (2009). Biofuels, facts, fantasy, and feasibility. Journal of Applied Phycology 21, 509517.
Yan, L., Lim, S. U. & Kim, I. H. (2012). Effect of fermented Chlorella supplementation on growth performance, nutrient digestibility, blood characteristics, fecal microbial and fecal noxious gas content in growing pigs. Asian-Australasian Journal of Animal Sciences 25, 17421747.

The effects of three total mixed rations with different concentrate to maize silage ratios and different levels of microalgae Chlorella vulgaris on in vitro total gas, methane and carbon dioxide production

  • A. E. KHOLIF (a1), M. M. Y. ELGHANDOUR (a2), A. Z. M. SALEM (a2), A. BARBABOSA (a2), O. MÁRQUEZ (a3) and N. E. ODONGO (a4)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed