Skip to main content Accessibility help
×
Home

The effects of soil sodicity on emergence, growth, development and yield of oilseed rape (Brassica napus)

  • F. H. Gutiérrez Boem (a1) and R. S. Lavado (a1)

Summary

The effects of exchangeable sodium on emergence, growth, development and yield composition of oilseed rape were investigated at Buenos Aires, Argentina in 1992. A pot experiment was performed using five exchangeable sodium levels, expressed as Sodium Adsorption Ratio (SAR: 12, 20, 27, 34 and 44). Soil with nine different exchangeable sodium contents (SAR from 0·5 to 50) and seven different particle size distributions (from sandy loam to clay) were used in a parallel trial to study the effect of soil crusting on oilseed rape emergence. Soil crusts were made using a rainfall simulator after seeds were sown. Both experiments showed that the direct effect of sodium on emergence occurred with SAR values higher than those which caused clay dispersion (SAR > 20). Oilseed rape seedlings could penetrate crusts having a resistance of < 230 kPa. At SAR values > 20, main stem growth and yield decreased significantly (P < 0·05). These reductions were counterbalanced by an increase in the number of secondary stems. At SAR levels > 34, stem number, grain number per pod on the main stem, as well as pod number on both main stem and secondary stems, were reduced, leading to a marked reduction in total yield. The most important agronomic effect of soil sodium on oilseed rape would be at emergence stage, due to soil crusting.

Copyright

References

Hide All
Ashraf, M. & McNeilly, T. (1990). Responses of four Brassica species to sodium chloride. Environmental and Experimental Botany 30, 475487.
Ashraf, M. & Naqvi, M. I. (1992). Growth and ion uptake of four Brassica species as affected by Na/Ca ratio in saline sand culture. Zeitschrift für Pflanzenernährung und Bodenkunde 155, 101108.
Boiffin, J., Fabre, B., Gautronneau, Y. & Sebillote, M. (1981). Les risques de mauvaise lévee du colza d'hiver en terre battante. Informations Techniques, CETIOM No. 73, 1228.
Centre Technique Interprofessionel Des Oléagineux Metropolitans (CETIOM) (1978). Colza d'hiver. Cahier Technique1.
Gupta, S. C.. & Larson, W. E. (1979). A model for predicting packing density of soils using particle-size distribution. Soil Science Society of America Journal 43, 758764.
Gupta, S. K. & Sharma, S. K. (1990). Response of crops to high exchangeable sodium percentage. Irrigation Science 11, 173179.
Gutiérrez Boem, F. H., Scheiner, J. D. & Lavado, R. S. (1994). Some effects of soil salinity on growth, development and yield of rapeseed (Brassica napus L.). Journal of Agronomy and Crop Science 172, 182187.
Lavado, R. S. (1988). Origin, characteristics and management of Solonetz soils in Argentina. In Proceedings of the International Symposium on Solonetz Soils (Osijek, Yugoslavia), pp. 128133.
Morrison, M. J., McVetty, P. B. E. & Shaykewich, C. F. (1989). The determination and verification of a baseline temperature for the growth of Westar summer rape. Canadian Journal of Plant Science 69, 455464.
Munns, R. & Termaat, A. (1986). Whole-plant responses to salinity. Australian Journal of Plant Physiology 13, 143160.
Murphy, G. M. & Pascale, N. C. (1989). Agroclimatología de la colza de primavera y su posible difusión en la Argentina. Revista Facultad de Agronomía 10, 159176.
Nuttall, W. F. (1982). The effect of seeding depth, soil moisture regime, and crust strength on emergence of rape cultivars. Agronomy Journal 74, 10181022.
Page, A. L., Miller, R. H. & Keeney, D. R.. (Eds) (1982). Methods of Soil Analysis. Part 2. American Society of Agronomy. Soil Science Society of America. Madison, Wisconsin, USA.
Painuli, D. K.& Abrol, I. P. (1986). Effects of exchangeable sodium on crusting behaviour of a sandy loam soil. Australian Journal of Soil Research 24, 367376.
Shainberg, I. (1985). The effect of exchangeable sodium and electrolyte concentration on crust formation. Advances in Soil Science 1, 101122.
Shainberg, I. & Letey, J. (1984). Response of soils to sodic and saline conditions. Hilgardia 52 (2), 157.
Shiel, R. S. & Yuniwo, E. C. (1993). Decreasing the impact of surface crusting on seedling emergence by spray wetting. Soil Use and Management 9, 4045.
Singh, M. P., Pandey, S. K., Singh, M., Ram, P. C. & Singh, B. B. (1990). Photosynthesis, transpiration, stomatal conductance and leaf chlorophyll content in mustard genotypes grown under sodic conditions. Pholosynthetica 24, 623627.
Singh, S. B., Chhabra, R. & Abrol, I. P. (1979). Effect of exchangeable sodium on the yield and chemical composition of raya (Brassica juncea L.). Agronomy Journal 71, 767770.
Taboada, M. A., Lavado, R. S. & Camilion, M. C. (1988). Cambios volumétricos en un Natracuol típico. Ciencia del Suelo 6, 151158.
Tarchitzky, J., Banin, A., Morin, J. & Chen, Y. (1984). Nature, formation and effects of soil crusts formed by water drop impact. Geoderma 33, 135155.
Taylor, H. M., Parker, J. J. Jr, & Roberson, G. M. (1966). Soil strength and seedling emergence relations. II. A generalized relation for gramineae. Agronomy Journal 58, 393395.
Thies, W. & McGregor, D. I. (1989). Analytical methods for the selection of oil content and fatty acid composition. In Oil Crops of the World: their Breeding and Utilization (Eds Röbbelen, G., Downey, R. K. & Ashri, A.), pp. 132164. New York: McGraw Hill.
Unger, P. W. (1984). Tillage effects on surface soil physical conditions and sorghum emergence. Soil Science Society of America Journal 48, 14231432.
Yadav, J. S. P. (1981). Salt affected soils and their management in India. Agrokemia es Talajtan 30 (Supplement), 2946.

The effects of soil sodicity on emergence, growth, development and yield of oilseed rape (Brassica napus)

  • F. H. Gutiérrez Boem (a1) and R. S. Lavado (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed