Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-07-01T06:48:23.134Z Has data issue: false hasContentIssue false

Effect of sowing date and variety on yield and weed populations in a lentil–barley mixture

Published online by Cambridge University Press:  23 November 2012

L. WANG*
Affiliation:
Institute of Crop Science (340a), University of Hohenheim, Fruwirthstraße 23, 70599 Stuttgart, Germany
S. GRUBER
Affiliation:
Institute of Crop Science (340a), University of Hohenheim, Fruwirthstraße 23, 70599 Stuttgart, Germany
W. CLAUPEIN
Affiliation:
Institute of Crop Science (340a), University of Hohenheim, Fruwirthstraße 23, 70599 Stuttgart, Germany
*
*To whom all correspondence should be addressed. E-mail: lina_wang108@hotmail.com

Summary

The present study examined variation in sowing date on lentils (Lens culinaris) in a standard lentil–barley (Hordeum vulgare) mixed cropping system in the temperate climate of central Europe to determine the effect on crop yield and weed control. A 2-year (2009/10) field experiment was carried out at the organic research station Kleinhohenheim (KH) and at the conventional research station Oberer Lindenhof (OLI) of the University Hohenheim, southwest Germany. The crop was sown at three dates in the period from March to May. Grain yield was significantly higher at the earliest sowing both for lentils (3·0 t/ha at KH, 2·4 t/ha at OLI) and barley (1·2 t/ha at KH, 2·6 t/ha at OLI). Weed biomass at KH increased significantly with delayed sowing and was independent of lentil genotype, whereas sowing date had no significant effect on overall weed biomass production at OLI. Unlike weed biomass, weed density generally decreased significantly with delayed sowing at OLI. The results indicate that early sowing can increase the yield of lentils, and can be used as an indirect method of weed control in some organic farming systems.

Type
Crops and Soils Research Papers
Copyright
Copyright © Cambridge University Press 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ball, D. A., Ogg, A. G. Jr & Chevalier, P. M. (1997). The influence of seeding rate on weed control in small-red lentil (Lens culinaris). Weed Science 45, 296300.CrossRefGoogle Scholar
Baird, J. M., Shirtliffe, S. J. & Walley, F. L. (2009). Optimal seeding rate for organic production of lentil in the northern great plains. Canadian Journal of Plant Science 89, 10891097.CrossRefGoogle Scholar
FAO (2010). FAOSTAT (Online). Available online at http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567#ancor (verified 13 October 2010).Google Scholar
Fruwirth, C. (1936). Landwirtschaftlich Wichtige Hülsenfruchter. Berlin: Verlagsbuchhandlung Paul Parey.Google Scholar
Guitard, A. A. (1960). The influence of variety, temperature and stage of growth on response of spring barley to photoperiod. Canadian Journal of Plant Science 40, 6580.CrossRefGoogle Scholar
Halila, M. H. (1995). Status and potential of winter-sowing of lentil in Tunisia. In Towards Improved Winter-sown Lentil Production for the West Asian and North African Highlands. Proceedings of a Workshop (Eds Keatinge, J. D. H. & Kusmenoglu, I.), pp. 172183. Antalya, Turkey: Central Research Institute for Field Crops.Google Scholar
Hamdi, A., Erskine, W. & Gates, P. (1992). Adaptation of lentil seed yield to varying moisture supply. Crop Science 32, 987990.CrossRefGoogle Scholar
Hamdi, H., Küsmenoğlu, I. & Erskine, W. (1996). Sources of winter hardiness in wild lentil. Genetic Resources and Crop Evolution 43, 6367.CrossRefGoogle Scholar
Horneburg, B. (2006). Outcrossing in lentil (Lens culinaris) depends on cultivar, location and year, and varies within cultivars. Plant Breeding 125, 638640.CrossRefGoogle Scholar
Kusmenoglu, I. & Aydin, N. (1995). The current status of lentil germplasm exploitation for adaptation to winter sowing in the Anatolian highlands. In Autumn Sowing of Lentil in the Highlands of West Asia and North Africa (Eds Keatinge, J. D. H. & Kusmenoglu, I.), pp. 6371. Ankara, Turkey: Central Research Institute for Field Crops (CRIFC).Google Scholar
LTZ (2011). Beratungsgrundlagen für die Düngung im Ackerbau und auf Grünland in Baden-Württemberg. Karlsruhe, Germany: Landwirtschaftliches Technologiezentrum Augustenberg (LTZ).Google Scholar
Mcdonald, G. K., Hollaway, K. L. & Mcmurray, L. (2007). Increasing plant density improves weed competition in lentil (Lens culinaris). Australian Journal of Experimental Agriculture 47, 4856.CrossRefGoogle Scholar
Mcvicar, R., Mccall, P., Brenzil, C., Hartley, S., Panchuk, K., Mooleki, P., Vandenberg, A. & Banniza, S.(2010). Lentil in Saskatchewan. Revised by R. RISULA. Saskatchewan, Canada: Saskatchewan Ministry of Agriculture. Available online at http://www.agriculture.gov.sk.ca/Default.aspx?DN=c5993bcc-009f-4031-b936-c52c992b9e7d (verified 22 December 2010).Google Scholar
Muehlbauer, F. J., Short, R. W., Summerfield, R. J., Morrison, K. J. & Swan, D. G. (1981). Description and Culture of Lentils. Cooperative Extension Publication EB 0957. Pullman, WA: College of Agriculture, Washington State University.Google Scholar
Muehlbauer, F. J., Kaiser, W. J., Clement, S. L. & Summerfield, R. J. (1995). Production and breeding of lentil. Advances in Agronomy 54, 283332.CrossRefGoogle Scholar
Murray, G. A., Eser, D., Gusta, L. V. & Eteve, G. (1988). Winter hardiness in pea, lentil, faba bean and chickpea. In World Crops: Cool Season Food Legumes (Ed. Summerfield, R. J.), pp. 831843. Dordrecht, The Netherlands: Kluwer Academic Publishers.CrossRefGoogle Scholar
Oplinger, E. S., Hardman, L. L., Kaminski, A. R., Kelling, K. A. & Doll, J. D. (1990). Lentil. In Alternative Field Crops Manual (Online). Available online at http://www.hort.purdue.edu/newcrop/afcm/lentil.html (verified 26 May 2011).Google Scholar
Paolini, R., Colla, G., Saccardo, F. & Campiglia, E. (2003). The influence of crop plant density on the efficacy of mechanical and reduced-rate chemical weed control in lentil (Lens culinaris Medik.). Italian Journal of Agronomy 7, 8594.Google Scholar
SAS Institute (2009). The SAS System for Windows Release 9.2. Cary, NC: SAS Institute.Google Scholar
Schüller, H. (1969). Die CAL-methode, eine neue methode zur bestimmung des pflanzenverfügbaren phosphors in Böden. Zeitschrift für Pflanzenernährung und Bodenkunde 123, 4863.CrossRefGoogle Scholar
Shrestha, R., Turner, N. C., Siddique, K. H. M., Turner, D. W. & Speijers, J. (2006). A water deficit during pod development in lentils reduces flower and pod numbers but not seed size. Australian Journal of Agricultural Research 57, 427438.CrossRefGoogle Scholar
Siddique, K. H. M., Loss, S. P., Pritchard, D. L., Regan, K. L., Tennant, D., Jettner, R. L. & Wilkinson, D. (1998). Adaptation of lentil (Lens culinaris Medik.) to Mediterranean-type environments: effect of time of sowing on growth, yield, and water use. Australian Journal of Agricultural Research 49, 613626.CrossRefGoogle Scholar
Silim, S. N., Saxena, M. C. & Erskine, W. (1991). Effect of sowing date on the growth and yield of lentil in a rainfed mediterranean environment. Experimental Agriculture 27, 145154.CrossRefGoogle Scholar
Summerfield, R. J. & Roberts, E. H. (1988). Photo-thermal regulation of flowering in pea, lentil, faba bean and chickpea. In World Crops: Cool Season Food Legumes (Ed. Summerfield, R. J.), pp. 911922. Dordrecht, The Netherlands: Kluwer Academic Publishers.CrossRefGoogle Scholar
Takahashi, R. & Yasuda, S. (1960). Varietal differences in responses to photoperiod and temperature in barley. Berichte des Ohara Institute für Landwirtschaftliche Biologie Okayama Universitaet 11, 365384.Google Scholar
Tepe, I., Erman, M., Yazlik, A., Levent, R. & Ipek, K. (2005). Comparison of some winter lentil cultivars in weed-crop competition. Crop Protection 24, 585589.CrossRefGoogle Scholar
Veseth, R. (1987). Yield losses resulting from soil acidity. In Pacific Northwest Conservation Farming Handbook [Online] (Chapter 6, no. 8). Corvalis, OR: Oregon State University. Available online at http://pnwsteep.wsu.edu/tillagehandbook/chapter6/060887.htm (verified 26 May 2011).Google Scholar
Vlachostergios, D. N., Lithourgidis, A. S. & Roupakias, D. G. (2010). Adaptability to organic farming of lentil (Lens culinaris Medik.) varieties developed from conventional breeding programmes. Journal of Agricultural Science, Cambridge 149, 8593.CrossRefGoogle Scholar
Wang, L., Gruber, S. & Claupein, W. (2012). Optimizing lentil-based mixed cropping with different companion crops and plant densities in terms of crop yield and weed control. Organic Agriculture 2, 7987.CrossRefGoogle Scholar
Yagmur, M. & Kaydan, D. (2006). Different intercrop arrangements with lentil and barley under dryland condition. Pakistan Journal of Biological Sciences 9, 19171922.CrossRefGoogle Scholar