Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-17T12:39:48.668Z Has data issue: false hasContentIssue false

The effect of potassium type and breed on the dry-matter percentage and specific gravity of the red blood cells and plasma of sheep

Published online by Cambridge University Press:  27 March 2009

M. S. Mounib
Affiliation:
The Rowett Research Institute, Bucksburn, Aberdeenshire
J. V. Evans
Affiliation:
The Rowett Research Institute, Bucksburn, Aberdeenshire

Extract

1. The red cells of sheep's blood containing a high concentration of potassium were found to have a higher dry-matter content and specific gravity than the red cells of sheep's blood with a low potassium content.

2. While the diet and age of the animal affected the dry-matter content and specific gravity of the plasma, they did not have a noticeable effect on the results obtained for the red blood cells.

3. Breed influenced the measurements for both the red blood cell and plasma.

4. In the three breeds of sheep examined an inverse relationship existed between the dry matter content of the red blood cells and of the plasma.

5. There is evidence that a correlation exists between the haemoglobin type of animal and the dry-matter content and specific gravity of the red blood cells.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1959

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Evans, J. V. (1954). Nature, Land., 174, 931.CrossRefGoogle Scholar
Evans, J. V. (1957). J. Physiol. 136, 41.CrossRefGoogle Scholar
Evans, J. V., King, J. W. B., Cohen, B. L., Harris, H. & Warren, F. L. (1956). Nature, Lond., 178, 849.CrossRefGoogle Scholar
Evans, J. V. & Mounib, M. S. (1957). J. Agric. Sci. 48, 433.CrossRefGoogle Scholar
Evans, J. V. & Phillipson, A. T. (1957). J. Physiol. 139, 87.CrossRefGoogle Scholar
Harris, H. & Warren, F. L. (1955). Biochem. J. 60, xxix.Google Scholar
Jennings, F. W., Lauder, I. M. & Mulligan, W. (1955). Biochem. J. 59, iii.Google Scholar
Kerr, S. E. (1937). J. Biol. Chem. 117, 227.CrossRefGoogle Scholar
MacLeod, J. (1933). Quart. J. Exp. Physiol. 22, 275.CrossRefGoogle Scholar
JrMiller, A. T. (1942). J. Biol. Chem. 143, 65.CrossRefGoogle Scholar
Phillips, R. A., Van Slyke, D. D., Hamilton, P. B., Dole, V. P., Emerson, K. Jr. & Archibald, R. M. (1950). J. Biol. Chem. 183, 305.CrossRefGoogle Scholar
Snedecor, G. W. (1955). Statistical Methods, 4th edition. The Iowa State College Press, Ames, Iowa, U.S.A.Google Scholar
Van Slyke, D. D., Phillips, R. A., Dole, V. P., Hamilton, P. B., Archibald, R. M. & Plazin, J. (1950). J. Biol. Chem. 183, 349.CrossRefGoogle Scholar
Widdas, W. F. (1954). J. Physiol. 125, 18P.CrossRefGoogle Scholar