Skip to main content Accessibility help
×
Home

Effect of Glomus aggregatum on photosynthetic function of snap bean in response to elevated ozone

  • S. G. WANG (a1), X. J. DIAO (a2), Y. W. LI (a3) and L. M. MA (a1)

Summary

Snap bean genotypes (Phaseolus vulgaris L.) with different ozone (O3) sensitivities (line S156: O3-sensitive; line R123: O3-tolerant) were grown for 70 days with or without inoculation of arbuscular mycorrhizal (AM) fungi under ambient (CAMB = 20 nanolitres (nl)/l and elevated (CMID = '50 nl/l and CHIG = 80 nl/l) O3. Sequential determinations (leaf injury, pigment concentration, chlorophyll fluorescence, photosynthesis, etc) were carried out during plant growth to evaluate mycorrhizal influence on the photosynthetic function of the two genotypes under elevated O3. Inoculation with AM fungi alleviated leaf injury in both genotypes and delayed time of injury manifestation (TIM) in the R123 line at the blooming stage (growth stage (GS): 61-65 (Zadoks scale, Zadoks et al. 1974), 30–35 days after the onset of O3 fumigation), but mycorrhizal effect was slight at the initial growth stage (GS 11–13, 0–5 days after onset of O3 fumigation). Relative to the non-mycorrhizal plant, AM fungi inoculation increased the concentrations of chlorophyll (Chl) a, Chl b and carotenoids in S156 plants, regardless of O3 levels, while in R123 plants a similar effect was observed only in the CAMB treatment. At the blooming (GS 61–65) and the pod filling (GS 71–77, 45–50 days after starting O3 fumigation) stages, photosynthetic rate, stomatal conductance and transpiration rate for the two genotypes decreased with elevated O3 in all treatments, although the effect was reduced in CAMB and CMID treatments in AM-inoculated plants; however, the mycorrhizal effect was slight in the CHIG treatment. Intercellular carbon dioxide concentration increased with elevated O3 regardless of AM fungi inoculation, but it was lower in the mycorrhizal plants than in the non-mycorrhizal plants, in most cases. Furthermore, AM fungi inoculation significantly increased the maximum quantum yield of photosystem II (PS II) photochemistry (Fv/Fm) and electron transport rate in both genotypes in the CHIG treatment. The present study indicated that in some cases, AM fungi inoculation can enhance plant tolerance to elevated O3 through improving plant photosynthetic function, but the effect was reduced by serious O3 stress.

Copyright

Corresponding author

*To whom all correspondence should be addressed. Email: shgwang2013@126.com

References

Hide All
Abbott, L. K. & Gazey, C. (1994). An ecological view of the formation of VA mycorrhizas. Plant and Soil 159, 6978.
Augé, R. M. (2001). Water relations, drought and VA mycorrhizal symbiosis. Mycorrhiza 11, 342.
Augé, R. M., Toler, H. D., Sams, C. E. & Nasim, G. (2008). Hydraulic conductance and water potential gradients in squash leaves showing mycorrhiza-induced increases in stomatal conductance. Mycorrhiza 18, 115121.
Avnery, S., Mauzerall, D. L., Liu, J. & Horowitz, L. W. (2011). Global crop yield reductions due to surface ozone exposure: 2. Year 2030 potential crop production losses and economic damage under two scenarios of O3 pollution. Atmospheric Environment 45, 22972309.
Bagheri, V., Shamshiri, M. H., Shirani, H. & Roosta, H. R. (2011). Effect of mycorrhizal inoculation on ecophysiological responses of pistachio plants grown under different water regimes. Photosynthetica 49, 531538.
Bermejo, V., Gimeno, B. S., Sanz, J., De La Torre, D. & Gil, J. M. (2003). Assessment of the ozone sensitivity of 22 native plant species from Mediterranean annual pastures based on visible injury. Atmospheric Environment 37, 46674677.
Bilger, W. & Björkman, O. (1991). Temperature dependence of violaxanthin de-epoxidation and non-photochemical fluorescence quenching in intact leaves of Gossypium hirsutum L. and Malva parviflora L. Planta 184, 226234.
Biswas, D. K., Xu, H., Li, Y. G., Sun, J. Z., Wang, X. Z., Han, X. G. & Jiang, G. M. (2008). Genotypic differences in leaf biochemical, physiological and growth responses to ozone in 20 winter wheat cultivars released over the past 60 years. Global Change Biology 14, 4659.
Black, K. G., Mitchell, D. T. & Osborne, B. A. (2000). Effect of mycorrhizal-enhanced leaf phosphate status on carbon partitioning, translocation and photosynthesis in cucumber. Plant, Cell and Environment 23, 797809.
Black, V. J., Stewart, C. A., Roberts, J. A. & Black, C. R. (2012). Timing of exposure to ozone affects reproductive sensitivity and compensatory ability in Brassica campestris. Environmental and Experimental Botany 75, 225234.
Boldt, K., Pörs, Y., Haupt, B., Bitterlich, M., Kühn, C., Grimm, B. & Franken, P. (2011). Photochemical processes, carbon assimilation and RNA accumulation of sucrose transporter genes in tomato arbuscular mycorrhiza. Journal of Plant Physiology 168, 12561263.
Bortier, K., De Temmerman, L. & Ceulemans, R. (2000). Effects of ozone exposure in open-top chambers on poplar (Populus nigra) and beech (Fagus sylvatica): a comparison. Environmental Pollution 109, 509516.
Brewer, P. F. & Heagle, A. S. (1983). Interactions between Glomus geosporum and exposure of soybeans to ozone or simulated acid rain in the field. Phytopathology 73, 10351040.
Calatayud, A., Alvarado, J. W. & Barreno, E. (2002). Differences in ozone sensitivity in three varieties of cabbage (Brassica oleracea L.) in the rural Mediterranean area. Journal of Plant Physiology 159, 863868.
Calatayud, A., Iglesias, D. J., Talon, M. & Barreno, E. (2004). Response of spinach leaves to ozone measured by gas exchange, chlorophyll a fluorescence, antioxidant systems, and lipid peroxidation. Photosynthetica 42, 2329.
Chen, Z., Wang, X. K., Feng, Z. Z., Xiao, Q. & Duan, X. N. (2009). Impact of elevated O3 on soil microbial community function under wheat crop. Water, Air and Soil Pollution 198, 189198.
Cho, K., Toler, H., Lee, J., Ownley, B., Stutz, J. C., Moore, J. L. & Augé, R. M. (2006). Mycorrhizal symbiosis and response of sorghum plants to combined drought and salinity stresses. Journal of Plant Physiology 163, 517528.
Cui, X. C., Hu, J. L., Lin, X. G., Wang, F. Y., Chen, R. R., Wang, J. H. & Zhu, J. G. (2013). Arbuscular mycorrhizal fungi alleviate ozone stress on nitrogen nutrition of field wheat. Journal of Agricultural Science and Technology 15, 10431052.
Demmig-Adams, B., Adams, W. W., Heber, U., Neimanis, S., Winter, K., Krüger, A., Czygan, F. C., Bilger, W. & Björkman, O. (1990). Inhibition of zeaxanthin formation and of rapid changes in radiationless energy dissipation by dithiothreitol in spinach leaves and chloroplasts. Plant Physiology 92, 293301.
Drew, E. A., Murray, R. S. & Smith, S. E. (2006). Functional diversity of external hyphae of AM fungi: ability to colonise new hosts is influenced by fungal species, distance and soil conditions. Applied Soil Ecology 32, 350365.
Duckmanton, L. & Widden, P. (1994). Effect of ozone on the development of vesicular-arbuscular mycorrhizae in sugar maple saplings. Mycologia 86, 181186.
Estrada-Luna, A. A. & Davies, F. T. Jr (2003). Arbuscular mycorrhizal fungi influence water relations, gas exchange, abscisic acid and growth of micropropagated chile ancho pepper (Capsicum annuum) plantlets during acclimatization and post-acclimatization. Journal of Plant Physiology 160, 10731083.
Fangmeier, A., De Temmerman, L., Black, C., Persson, K. & Vorne, V. (2002). Effects of elevated CO2 and/or ozone on nutrient concentrations and nutrient uptake of potatoes. European Journal of Agronomy 17, 353368.
Feng, Z. Z., Kobayashi, K. & Ainsworth, E. A. (2008). Impact of elevated ozone concentration on growth, physiology and yield of wheat (Triticum aestivum L.): a meta-analysis. Global Change Biology 14, 26962708.
Finnan, J. M., Donnelly, A., Burke, J. I. & Jones, M. B. (2002). The effects of elevated concentrations of carbon dioxide and ozone on potato (Solanum tuberosum L.) yield. Agriculture, Ecosystems and Environment 88, 1122.
Fiscus, E. L., Booker, F. L. & Burkey, K. O. (2005). Crop responses to ozone: uptake, modes of action, carbon assimilation and partitioning. Plant, Cell and Environment 28, 9971011.
Flowers, M. D., Fiscus, E. L., Burkey, K. O., Booker, F. L. & Dubois, J.-J. B. (2007). Photosynthesis, chlorophyll fluorescence, and yield of snap bean (Phaseolus vulgaris L.) genotypes differing in sensitivity to ozone. Environmental and Experimental Botany 61, 190198.
Francini, A., Nali, C., Picchi, V. & Lorenzini, G. (2007). Metabolic changes in white clover clones exposed to ozone. Environmental and Experimental Botany 60, 1119.
Gauss, M., Myhre, G., Isaksen, I. S. A., Grewe, V., Pitari, G., Wild, O., Collins, W. J., Dentener, F. J., Ellingsen, K., Gohar, L. K., Hauglustaine, D. A., Iachetti, D., Lamarque, F., Mancini, E., Mickley, L. J., Prather, M. J., Pyle, J. A., Sanderson, M. G., Shine, K. P., Stevenson, D. S., Sudo, K., Szopa, S. & Zeng, G. (2006). Radiative forcing since preindustrial times due to ozone change in the troposphere and the lower stratosphere. Atmospheric Chemistry and Physics 6, 575599.
Genty, B., Briantais, J. M. & Baker, N. R. (1989). The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta: General Subjects 990, 8792.
Georgieva, K. & Lichtenthaler, H. K. (1999). Photosynthetic activity and acclimation ability of pea plants to low and high temperature treatment as studied by means of chlorophyll fluorescence. Journal of Plant Physiology 155, 416423.
Guidi, L., Bongi, G., Ciompi, S. & Soldatini, G. F. (1999). In Vicia faba leaves photoinhibition from ozone fumigation in light precedes a decrease in quantum yield of functional PSII centres. Journal of Plant Physiology 154, 167172.
Heath, R. L. & Taylor, G. E. (1997). Physiological processes and plant responses to ozone exposure. In Forest Decline and Ozone (Eds Sandermann, H., Wellburn, A. R. & Heath, R. L.), pp. 317368. Ecological Studies vol. 127. Berlin: Springer-Verlag.
IPCC (2007). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Eds Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M. & Miller, H. L.). Cambridge, UK and New York: Cambridge University Press.
Karnosky, D. F., Zak, D. R., Pregitzer, K. S., Awmack, C. S., Bockheim, J. G., Dickson, R. E., Hendrey, G. R., Host, G. E., King, J. S., Kopper, B. J., Kruger, E. L., Kubiske, M. E., Lindroth, R. L., Mattson, W. J., Mcdonald, E. P., Noormets, A., Oksanen, E., Parsons, W. F. J., Percy, K. E., Podila, G. K., Riemenschneider, D. E., Sharma, P., Thakur, R., Sôber, A., Sôber, J., Jones, W. S., Anttonen, S., Vapaavuori, E., Mankovska, B., Heilman, W. & Isebrands, J. G. (2003). Tropospheric O3 moderates responses of temperate hardwood forests to elevated CO2: a synthesis of molecular to ecosystem results from the Aspen FACE project. Functional Ecology 17, 289304.
Kollner, B. & Krause, G. H. M. (2000). Changes in carbohydrates, leaf pigments and yield in potatoes induced by different ozone exposure regimes. Agriculture, Ecosystems and Environment 78, 149158.
Leitao, L., Dizengremel, P. & Biolley, J. P. (2008). Foliar CO2 fixation in bean (Phaseolus vulgaris L.) submitted to elevated ozone: distinct changes in Rubisco and PEPc activities in relation to pigment content. Ecotoxicology and Environmental Safety 69, 531540.
Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology 148, 350382.
Lichtenthaler, H. K. & Buschmann, C. (1987). Chlorophyll fluorescence spectra of green bean leaves. Journal of Plant Physiology 129, 137147.
Liu, F., Wang, X. K. & Zhu, Y. G. (2009). Assessing current and future ozone-induced yield reductions for rice and winter wheat in Chongqing and the Yangtze River Delta of China. Environmental Pollution 157, 707709.
Liu, Q., Lam, K. S., Jiang, F., Wang, T. J., Xie, M., Zhuang, B. L. & Jiang, X. Y. (2013). A numerical study of the impact of climate and emission changes on surface ozone over South China in autumn time in 2000–2050. Atmospheric Environment 76, 227237.
Mathur, N. & Vyas, A. (1995). I. Influence of VA mycorrhizae on net photosynthesis and transpiration of Ziziphus mauritiana. Journal of Plant Physiology 147, 328330.
Maxwell, K. & Johnson, G. N. (2000). Chlorophyll fluorescence-a practical guide. Journal of Experimental Botany 345, 659668.
McCool, P. M. & Menge, J. A. (1984). Interaction of ozone and mycorrhizal fungi on tomato as influenced by fungal species and host variety. Soil Biology and Biochemistry 16, 425427.
McGonigle, T. P., Miller, M. H., Evans, D. G., Fairchild, G. L. & Swan, J. A. (1990). A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytologist 115, 495501.
Miller, J. E., Shafer, S. R., Schoeneberger, M. M., Pursley, W. A., Horton, S. J. & Davey, C. B. (1997). Influence of a mycorrhizal fungus and/or rhizobium on growth and biomass partitioning of subterranean clover exposed to ozone. Water, Air and Soil Pollution 96, 233248.
Mills, G., Wagg, S. & Harmens, H. (2013). Ozone Pollution: Impacts on Ecosystem Services and Biodiversity. Report prepared by the ICP Vegetation. Bangor, UK: ICP Vegetation Programme Coordination Centre & Centre for Ecology and Hydrology.
Morgan, P. B., Ainsworth, E. A. & Long, S. P. (2003). How does elevated ozone impact soybean? A meta-analysis of photosynthesis, growth and yield. Plant, Cell and Environment 26, 13171328.
Nawahda, A. & Yamashita, K. (2013). The effect of ground level ozone on vegetation: the case of spatial variability of crops in the People's Republic of China. International Journal of Society Systems Science 5, 8298.
Osmond, C. B. (1994). What is photoinhibition? Some insights from comparisons of shade and sun plants. In Photoinhibition of Photosynthesis: from Molecular Mechanisms to the Field (Eds Baker, N. R. & Bowyer, J. R.), pp. 124. Oxford, UK: BIOS Scientific Publishers.
Paradi, I., Bratek, Z. & Lang, F. (2003). Influence of arbuscular mycorrhiza and phosphorus supply on polyamine content, growth and photosynthesis of Plantago lanceolata. Biologia Plantarum 46, 563569.
Pereira, W. E., De Siqueira, D. L., Martinez, C. A. & Puiatti, M. (2000). Gas exchange and chlorophyll fluorescence in four citrus rootstocks under aluminium stress. Journal of Plant Physiology 157, 513520.
Rai, M. K., Shende, S. & Strasser, R. J. (2008). JIP test for fast fluorescence transients as a rapid and sensitive technique in assessing the effectiveness of arbuscular mycorrhizal fungi in Zea mays: analysis of chlorophyll a fluorescence. Plant Biosystems 142, 191198.
Read, D. J., Duckett, J. G., Francis, R., Ligrone, R. & Russell, A. (2000). Symbiotic fungal associations in “lower” land plants. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 355, 815830.
Richards, B. L., Middleton, J. T. & Hewitt, W. B. (1958). Air pollution with relation to agronomic crops: V. Oxidant stipple of grape. Agronomy Journal 50, 559561.
Royal Society (2008). Ground-Level Ozone in the 21st Century: Future Trends, Impacts and Policy Implications. Science Policy Report 15/08. London: The Royal Society. Available from: https://royalsociety.org/policy/publications/2008/ground-level-ozone/ (accessed December 2014).
Schoefts, B. & Bertrand, M. (2000). The formation of chlorophyll from chlorophyllide in leaves containing proplastids is a four-step process. FEBS Letters 486, 243246.
Shafer, S. R. & Schoeneberger, M. M. (1991). Mycorrhizal mediation of plant-response to atmospheric change - air-quality concepts and research considerations. Environmental Pollution 73, 163177.
Smith, S. E. & Read, D. (2008). Mycorrhizal Symbiosis, 3rd edn. London: Academic Press.
Streets, D. G., Fu, J. S., Jang, C. J., Hao, J. M., He, K. B., Tang, X. Y., Zhang, Y. H., Wang, Z. F., Li, Z. P., Zhang, Q., Wang, L. T., Wang, B. Y. & Yu, C. (2007). Air quality during the 2008 Beijing Olympic Games. Atmospheric Environment 41, 480492.
Talaat, N. B. & Shawky, B. T. (2014). Protective effects of arbuscular mycorrhizal fungi on wheat (Triticum aestivum L.) plants exposed to salinity. Environmental and Experimental Botany 98, 2031.
Tang, G., Li, X., Wang, Y., Xin, J. & Ren, X. (2009). Surface ozone trend details and interpretations in Beijing, 2001–2006. Atmospheric Chemistry and Physics 9, 88138823.
Tsimilli-Michael, M., Eggenberg, P., Biro, B., Köves-Pechy, K., Vörös, I. & Strasser, R. J. (2000). Synergistic and antagonistic effects of arbuscular mycorrhizal fungi and Azospirillum and Rhizobium nitrogen-fixers on the photosynthetic activity of alfalfa, probed by the polyphasic chlorophyll a fluorescence transient O-J-I-P. Applied Soil Ecology 15, 169182.
Wang, H. X., Kiang, C. S., Tang, X. Y., Zhou, X. J. & Chameides, W. L. (2005). Surface ozone: a likely threat to crops in Yangtze delta of China. Atmospheric Environment 39, 38433850.
Wang, S. G., Feng, Z. Z., Wang, X. K. & Gong, W. L. (2011). Arbuscular mycorrhizal fungi alter the response of growth and nutrient uptake of snap bean (Phaseolus vulgaris L.) to O3. Journal of Environmental Sciences 23, 968974.
Wang, S. G., Wang, F., Diao, X. J. & He, L. S. (2014). Effects of elevated O3 on microbes in the rhizosphere of mycorrhizal snap bean with different O3 sensitivity. Canadian Journal of Microbiology 60, 93103.
Wang, X. K., Manning, W., Feng, Z. W. & Zhu, Y. G. (2007). Ground-level ozone in China: distribution and effects on crop yields. Environmental Pollution 147, 394400.
Wu, Q. S. & Xia, R. X. (2006). Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. Journal of Plant Physiology 163, 417425.
Xiao, J. X., Hu, C. Y., Chen, Y. Y., Yang, B. & Hua, J. (2014). Effects of low magnesium and an arbuscular mycorrhizal fungus on the growth, magnesium distribution and photosynthesis of two citrus cultivars. Scientia Horticulturae 177, 1420.
Yoshida, L. C., Gamon, J. A. & Andersen, C. P. (2001). Differences in above- and below-ground responses to ozone between two populations of a perennial grass. Plant and Soil 233, 203211.
Zadoks, J. C., Chang, T. T. & Konzak, C. F. (1974). A decimal code for the growth stages of cereals. Weed Research 14, 415421.
Zheng, J. Y., Zhang, L. J., Che, W. W., Zheng, Z. Y. & Yin, S. S. (2009). A highly resolved temporal and spatial air pollutant emission inventory for the Pearl River Delta region, China and its uncertainty assessment. Atmospheric Environment 43, 51125122.
Zhu, X. C., Song, F. B., Liu, S. Q. & Liu, T. D. (2011). Effects of arbuscular mycorrhizal fungus on photosynthesis and water status of maize under high temperature stress. Plant and Soil 346, 189199.
Zuccarini, P. (2007). Mycorrhizal infection ameliorates chlorophyll content and nutrient uptake of lettuce exposed to saline irrigation. Plant, Soil and Environment 53, 283289.

Effect of Glomus aggregatum on photosynthetic function of snap bean in response to elevated ozone

  • S. G. WANG (a1), X. J. DIAO (a2), Y. W. LI (a3) and L. M. MA (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed