Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-22T09:27:05.819Z Has data issue: false hasContentIssue false

Dairy farming: indoor v. pasture-based feeding

Published online by Cambridge University Press:  08 April 2014

P. HOFSTETTER*
Affiliation:
Vocational Education and Training Centre for Nature and Nutrition (BBZN) Schüpfheim and Hohenrain, Chlosterbüel 28, CH-6170 Schüpfheim, Switzerland
H.-J. FREY
Affiliation:
Vocational Education and Training Centre for Nature and Nutrition (BBZN) Schüpfheim and Hohenrain, Chlosterbüel 28, CH-6170 Schüpfheim, Switzerland
C. GAZZARIN
Affiliation:
Agroscope, Institute for Sustainability Sciences (ISS), Tänikon, Switzerland
U. WYSS
Affiliation:
Agroscope, Institute for Livestock Sciences (ILS), Posieux, Switzerland
P. KUNZ
Affiliation:
School of Agricultural, Forest and Food Sciences (HAFL), Bern University of Applied Sciences, Zollikofen, Switzerland
*
*To whom all correspondence should be addressed. Email: pius.hofstetter@edulu.ch

Summary

The current situation of volatile milk prices and rising costs of, e.g. grain and labour, suggests that it is worth studying productivity and efficiency in dairy farming. The objective of the current whole-system study, carried out in lowland Central Switzerland from 2007 to 2010, was to compare the performance, efficiency, land productivity and profitability of indoor-feeding (IF) dairy production with that of pasture-based feeding (PF) dairy production. An IF herd consisting of 11 Holstein–Friesian (HF) and 13 Brown Swiss (BS) cows was kept in a free-stall barn and fed a part-mixed ration (PMR) of maize silage, grass silage and protein concentrate. The cows were allocated 15·8 ha of agricultural land (AL). In the PMR, an average per lactation of 443 kg protein concentrate and 651 kg compound feed was fed by a concentrate dispenser according to the requirements of each cow. The PF herd comprised 14 Swiss Fleckvieh (SF) and 14 BS cows, which were kept in a free-stall barn throughout the winter; barn-ventilated hay was offered ad libitum during the lactation period. This herd was allocated 15·7 ha of AL. After calving in spring, the PF cows grazed on semi-continuous pastures; they consumed an average of 285 kg of concentrate per lactation. The IF cows of the BS breed produced significantly more energy-corrected milk (ECM) per standard lactation compared with PF cows (8750 v. 5610 kg), more milk fat (350 v. 213 kg) and more milk protein (306 v. 203 kg). However, the milk of PF cows had higher levels of conjugated linoleic acid (CLA) (1·9 v. 0·6 g/100 g fat) and ω−3 fatty acids (1·7 v. 0·9 g/100 g fat) than the milk of the IF cows. The calving interval (378 v. 405 days) and the empty time (87 v. 118 days) of the BS breed were significantly shorter in the PF in comparison with that of the IF production system. The IF herd yielded significantly higher ECM/ha AL and year (12 716 v. 10 307 kg), and showed a higher feed efficiency (1·3 v. 1·1 kg ECM/kg of total dry matter intake (DMI)). The productivity per hour was roughly similar in the two systems (IF: 76 v. PF: 73 kg milk/h). The PF system resulted in higher labour income compared with the IF system (20·7 v. 13·4 €/h), but the difference was not significant. In conclusion, land productivity and efficiency were higher with the IF herd than the PF herd due to the higher energy intake per kg feed. However, within the given conditions, the more interesting case, economically, might be the reduced costs and improved milk quality of the PF system rather than the increased milk yield of the IF cows.

Type
Animal Research Papers
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

AGFF (Arbeitsgemeinschaft zur Förderung des Futterbaues) (2002). Wettbewerb Flächenproduktivität in der Milchproduktion. Zürich, Switzerland: AGFF.Google Scholar
ALP (Agroscope Liebefeld-Posieux) (2008). Fütterungsempfehlungen und Nährwerttabellen für Wiederkäuer: das Grüne Buch. Posieux, Switzerland: Agroscope.Google Scholar
Alqaisi, O., Steglich, J., Ndambi, A. & Hemme, T. (2011). Feeding systems: an assessment of dairy competitiveness. In IFCN Dairy Report 2011 (Ed. Hemme, T.), pp. 174175. Kiel, Germany: IFCN Dairy Research Center.Google Scholar
AOAC (2005). Official Methods of Analysis. Arlington, VA, USA: AOAC.Google Scholar
Barb, C. R. & Kraeling, R. R. (2004). Role of leptin in the regulation of gonadotropin secretion in farm animals. Animal Reproduction Science 82, 155167.CrossRefGoogle ScholarPubMed
Bargo, F., Müller, L. D., Delahoy, J. E. & Cassidy, T. W. (2002). Performance of high producing dairy cows with three different feeding systems combining pasture and total mixed rations. Journal of Dairy Science 85, 29482963.CrossRefGoogle ScholarPubMed
Braunvieh Schweiz (2011). Geschäftsbericht 2010. Zug, Switzerland: Braunvieh Schweiz. Available from: http://homepage.braunvieh.ch/xml_1/internet/de/application/d7/d999/f1103.cfm (accessed 14 February 2014).Google Scholar
Braunvieh Schweiz (2012). Zuchtwertschätzung. Zug, Switzerland: Braunvieh Schweiz. Available from: http://homepage.braunvieh.ch/xml_1/internet/de/application/d4/f58.cfm (accessed 5 February 2014).Google Scholar
Braunvieh Schweiz (2013). Vorschriften MLP. Zug, Switzerland: Braunvieh Schweiz. Availaible from: http://homepage.braunvieh.ch/xml_1/internet/de/application/d7/d548/f550.cfm (accessed 14 January 2014).Google Scholar
Burren, A., Gazzarin, Ch., Keckeis, K., Kunz, P., Piccand, V., Pitt-Käch, S., Rieder, St., Roth, N., Schori, F., Thomet, P., Troxler, J., Wanner, M. & Weilenmann, S. (2010). Projekt Weidekuhgenetik, 2007–2010. Schlussbericht. (Eds. Roth, N. & Kunz, P.), Zollikofen, Switzerland: Schweizerische Hochschule für Landwirtschaft. Available from: http://dx.doi.org/10.5167/uzh-60075 (accessed 5 February 2014).Google Scholar
Butler, W. R. (2005). Relationship of negative energy balance with fertility. Advances in Dairy Technology 17, 3546.Google Scholar
Butler, W. R. & Smith, R. D. (1989). Interrelationship between energy balance and postpartum reproductive function in dairy cattle. Journal of Dairy Science 72, 767783.Google Scholar
Coleman, J., Pierce, K. M., Berry, D. P., Brennan, A. & Horan, B. (2009). The influence of genetic selection and feed system on the reproductive performance of spring-calving dairy cows within future pasture-based production systems. Journal of Dairy Science 92, 52585269.Google Scholar
Collomb, M. & Bühler, T. (2000). Analyse de la composition en acides gras de la graisse de lait. I. Optimisation et validation d'une méthode générale à haute résolution. Mitteilungen aus Lebensmitteluntersuchung und Hygiene 91, 306332.Google Scholar
Collomb, M., Bisig, W., Bütikofer, U., Sieber, R., Bregy, M. & Etter, L. (2008). Seasonal variation in the fatty acid composition of milk supplied to dairies in the mountain regions of Switzerland. Dairy Science and Technology 88, 631647.Google Scholar
Corral, A. J. & Fenlon, J. S. (1978). A comparative method for describing the seasonal distribution of production from grasses. Journal of Agricultural Science, Cambridge 91, 6167.Google Scholar
Curran, J., Delaby, L., Kennedy, E., Murphy, J. P., Boland, T. M. & O`Donovan, M. (2010). Sward characteristics, grass dry matter intake and milk production performance are affected by pre-grazing herbage mass and pasture allowance. Livestock Science 127, 144154.Google Scholar
Daget, P. & Poissonet, J. (1969). Analyse Phytologique des Prairies. Application Agronomique. Document no. 48. Montpellier, France: CNRS.Google Scholar
Dhiman, T. R., Arnand, G. R., Satter, L. D. & Pariza, M. W. (1999). Conjugated linoleic acid content of milk from cows fed different diets. Journal of Dairy Science 82, 21462156.Google Scholar
Dillon, P., Roche, J. R., Shalloo, L. & Horan, B. (2005). Optimising financial return from grazing in temperate pastures. In Utilisation of Grazed Grass in Temperate Animal Systems. Proceedings of a Satellite Workshop of the XXth International Grassland Congress, Cork Ireland (Ed. Murphy, J. J.), pp. 131138. Wageningen, The Netherlands: Wageningen Academic Publishers.CrossRefGoogle Scholar
Durgiai, B. (1996). Mit Kurzrasenweide die Milchproduktionskosten senken. Agrarforschung 3, 509512.Google Scholar
Edmonson, A. J., Lean, I. J., Weaver, L. D., Farver, T. & Webster, G. (1989). A body condition scoring chart for Holstein dairy cows. Journal of Dairy Science 72, 6878.CrossRefGoogle Scholar
FAO (2013). The State of Food and Agriculture. Rome: FAO. Available from: http://www.fao.org/docrep/018/i3301e/i3301e.pdf (accessed 14 January 2014).Google Scholar
Fariña, S. R., Garcia, S. C., Fulkerson, W. J. & Barchia, I. M. (2011). Pasture-based dairy farm systems increasing milk production through stocking rate or milk yield per cow: pasture and animal responses. Grass and Forage Science 66, 316332.CrossRefGoogle Scholar
Flisch, R., Sinaj, S., Charles, R. & Richner, W. (2009). GRUDAF: Grundlagen für die Düngung im Acker- und Futterbau. Agrarforschung 16, 1100.Google Scholar
Fontaneli, R. S., Sollenberger, L. E., Littell, R. C. & Staples, C. R. (2005). Performance of lactating dairy cows managed on pasture-based or freestall barn-feeding systems. Journal of Dairy Science 88, 12641276.CrossRefGoogle ScholarPubMed
Fulkerson, W. J., Davison, T. M., Garcia, S. C., Hough, G., Goddard, M. E., Dobos, R. & Blockey, M. (2008). Holstein–Friesian dairy cows under a prodominatly grazing system: interaction between genotype and environment. Journal of Dairy Science 91, 826839.Google Scholar
Gazzarin, Ch. & Hilty, R. (2002). Stallsysteme für Milchvieh: Vergleich der Bauinvestitionen. FAT-Bericht no. 586. Tänikon, Switzerland: FAT.Google Scholar
Gazzarin, Ch. & Lips, M. (2006). Entwicklungsoptionen typischer Milchproduktionsbetriebe unter AP 2011 – Investieren, Spezialisieren oder Kooperieren? FAT-Bericht no. 651. Ettenhausen, Switzerland: Agroscope FAT Tänikon.Google Scholar
Gazzarin, Ch. & Lips, M. (2007). Lohnt sich das Wachstum in der Milchproduktion? Dynamische Simulation für 30 Jahre. ART-Bericht no. 693. Ettenhausen, Switzerland: Forschungsanstalt Agroscope Reckenholz-Tänikon ART.Google Scholar
Gazzarin, Ch. & Schick, M. (2004). Milchproduktionssysteme für die Talregion – Vergleich von Wirtschaftlichkeit und Arbeitsbelastung. FAT-Bericht no. 608. Tänikon, Switzerland: FAT.Google Scholar
Gazzarin, Ch., Ammann, H., Schick, M., Van Caenegem, L. & Lips, M. (2005). Milchproduktionssysteme in der Tal- und Hügelregion – was ist optimal für die Zukunft? FAT-Bericht no. 645. Ettenhausen, Switzerland: Agroscope FAT Tänikon.Google Scholar
Gazzarin, Ch., Brand, R., Albisser, G. & Wettstein, N. (2011). Milchproduktion auf Berg- und Hügelbetrieben in der Schweiz und Österreich. ART-Bericht no. 749. Ettenhausen, Switzerland: Forschungsanstalt Agroscope Reckenholz-Tänikon ART.Google Scholar
Hilty, R., Van Caenegem, L. & Herzog, D. (2007). ART-Preisbaukasten 2007. Baukostensammlung für Landwirtschaftliche Betriebsgebäude. Ettenhausen, Switzerland: Forschungsanstalt Agroscope Reckenholz-Tänikon.Google Scholar
Hoden, A., Fiorellei, J. L., Jeannin, B., Huguet, L., Muller, A. & Weiss, P. (1987). Le pâturage simplifié pour vaches laitières: synthèse de résultats expérimentaux. Fourrages 111, 239257.Google Scholar
Hofstetter, P. (2010). Structural analysis of dairy industry and its evolution in Central Switzerland. Grassland Science in Europe 15, 109111.Google Scholar
Hofstetter, P., Steiger Burgos, M., Petermann, R., Münger, A., Blum, J. W., Thomet, P., Menzi, H., Kohler, S. & Kunz, P. (2011). Does body size of dairy cows, at constant ratio of maintenance to production requirements, affect productivity in a pasture-based production system? Journal of Animal Physiology and Animal Nutrition 95, 717729.Google Scholar
Holden, L. A., Muller, L. D. & Fales, S. L. (1994). Estimation of intake in high producing Holstein cows grazing grass pasture. Journal of Dairy Science 77, 23322340.Google Scholar
Holstein Switzerland (2014). Gesamtindex ISEL. Posieux, Switzerland: Holstein Switzerland. Available from: http://www.holstein.ch/rubriques/?keyRubrique=gesamtindex (accessed 14 February 2014).Google Scholar
Horan, B., Dillon, P., Faverdin, P., Delaby, L., Buckley, F. & Rath, M. (2005). The interaction of strain of Holstein–Friesian cows and pasture-based feed system on milk yield, body weight and body condition score. Journal of Dairy Science 88, 12311243.Google Scholar
Horn, M., Steinwidder, A., Gasteiner, J., podstatzky, L., Haiger, A. & Zollitsch, W. (2013). Suitability of different dairy cow types for an Alpine organic and low-input milk production system. Livestock Science 153, 135146.CrossRefGoogle Scholar
Kaufmann, L. D., Münger, A., Rérat, M., Junghans, P., Görs, S., Metges, C. C. & Dohme-Meier, F. (2011). Energy expenditure of grazing cows and cows fed grass indoors as determined by the 13 C bicarbonate dilution technique using an automatic blood sampling system. Journal of Dairy Science 94, 19892000.Google Scholar
Kolver, E. S. & Muller, L. D. (1998). Performance and nutrient intake of high producing Holstein cows consuming pasture or a total mixed ration. Journal of Dairy Science 81, 14031411.Google Scholar
Linn, J. (2013). Feeding Total Mixed Rations. Dairy Extension. St. Paul, MN, USA: University of Minnesota/Extension. Available from: http://www1.extension.umn.edu/agriculture/dairy/feed-and-nutrition/feeding-total-mixed-rations/ (accessed 15 January 2014).Google Scholar
Macdonald, K. A., Penno, J. W., Lancaster, J. A. S. & Roche, J. R. (2008). Effect of stocking rate on pasture production, milk production, and reproduction of dairy cows in pasture-based systems. Journal of Dairy Science 91, 21512163.Google Scholar
McEvoy, M., Kennedy, E., Murphy, J. P., Boland, T. M., Delaby, L. & O`Donovan, M. (2008). The effect of herbage allowance and concentrate supplementation on milk production performance and dry matter intake of spring-calving dairy cows in early lactation. Journal of Dairy Science 91, 12581269.CrossRefGoogle ScholarPubMed
McEvoy, M., O`Donovan, M., Kennedy, E., Murphy, J. P., Delaby, L. & Boland, T. M. (2009). Effect of pregrazing herbage mass and pasture allowance on the lactation performance of Holstein–Friesian dairy cows. Journal of Dairy Science 92, 414422.Google Scholar
Metzner, M., Heuwieser, W. & Klee, W. (1993). Die Beurteilung der Körperkondition im Herdenmanagement (Body condition scoring in dairy herd health management). Der Praktischer Tierarzt 11, 991998.Google Scholar
Mosimann, E. (2001). Croissance des herbages. Méthodes de mesures et applications pratiques. Revue Suisse Agriculture 33, 163167.Google Scholar
Münger, A. & Jans, F. (2001). Umtriebs- und Kurzrasenweide für Milchkühe im Vergleich. Agrarforschung Schweiz 8, 464469.Google Scholar
NRC (2001). Nutrient Requirements of Dairy Cattle, 7th edn. (revised edition). Washington, DC: National Academy Press.Google Scholar
Nyfeler, D., Huguenin-Elie, O., Suter, M., Frossard, E. & Lüscher, A. (2011). Grass–legume mixtures can yield more nitrogen than legume pure stands due to mutual stimulation of nitrogen uptake from symbiotic and non-symbiotic sources. Agriculture, Ecosystems and Environment 140, 155163.Google Scholar
Pulido, R. G. & Leaver, J. D. (2003). Continuous and rotational grazing of dairy cows – the interactions of grazing system with level of milk yield, sward height and concentrate level. Grass and Forage Science 58, 265275.CrossRefGoogle Scholar
R Development Core Team (2012). R Software Version 2.11.1. Available from: http://www.r-project.org/ (accessed 15 January 2014).Google Scholar
Reist, M., Koller, A., Busato, A., Kupfer, U. & Blum, J. W. (2000). First ovulation and ketone body status in the early postpartum period of dairy cows. Theriogenology 54, 685701.Google Scholar
Schori, F. (2009). Weidebesatzstärken: Auswirkung auf Milchleistung und Grasqualität. Agrarforschung Schweiz 16, 436441.Google Scholar
Schori, F. & Münger, A. (2010). Grazing behavior and intake of two Holstein cow types in a pasture-based production system. Grassland Science in Europe 15, 895897.Google Scholar
Sjaunja, L. O., Baevre, L., Junkkarinen, L., Pedersen, J. & Setälä, J. (1990). A Nordic proposal for an energy corrected milk (ECM) formula. In Performance Recording of Animals: State of the Art, 1990. Proceedings of the 27th Biennial Session of the International Committee for Animal Recording (ICAR), July 2–6 1990, Paris, France. EEAP Publication no. 50 (Ed. van Arendonk, J. A. M.), pp. 156157. Wageningen, The Netherlands: Pudoc.Google Scholar
Stark, R., Schick, M. & Moriz, C. (2009). ART-Arbeitsvoranschlag. Planungsinstrument zur Kalkulation des Personal und Maschineneinsatzes auf landwirtschaftlichen Betrieben. Software Version 2009. Ettenhausen, Switzerland: Forschungsanstalt Agroscope Reckenholz-Tänikon ART.Google Scholar
Steiger Burgos, M., Petermann, R., Hofstetter, P., Thomet, P., Kohler, S., Münger, A., Blum, J. W., Menzi, H. & Kunz, P. (2007). Quel type de vache laitière pour produire du lait au pâturage? Revue Suisse Agriculture 39, 123128.Google Scholar
Swiss Herdbook (2013). Reglement über die Zuchtwertschätzung und Nachzuchtprüfung bei swissherdbook. Zollikofen, Switzerland: Swiss Herdbook. Available from: http://www.swissherdbook.ch/genetik/zuchtwerte/ (accessed 5 February 2014).Google Scholar
Thomet, P. & Blättler, T. (1998). Graswachstum als Grundlage für die Weideplanung. Agrarforschung 5, 2528.Google Scholar
Thomet, P., Hadorn, M., Jans, F., Troxler, J., Perler, O. & Meili, E. (1999). Kurzrasenweide Intensivstandweide. Arbeitsgemeinschaft zur Förderung des Futterbaus (AGFF) Merkblatt, 2. Zurich, Switzerland: FAL Zürich-Reckenholz.Google Scholar
Thomet, P., Piccand, V., Schori, F., Troxler, J., Wanner, M. & Kunz, P. (2010). Efficiency of Swiss and New Zealand dairy breeds under grazing conditions on Swiss dairy farms. Grassland Science in Europe 15, 10181020.Google Scholar
Tozer, P. R., Bargo, F. & Muller, L. D. (2003). Economic analyses of feeding systems combining pasture and total mixed ration. Journal of Dairy Science 86, 808818.CrossRefGoogle ScholarPubMed
Vance, E. R., Ferris, C. P., Elliott, C. T., McGettrick, S. A. & Kilpatrick, D. J. (2012). Food intake, milk production, and tissue changes of Holstein–Friesian and Jersey × Holstein–Friesian dairy cows within a medium-input grazing system and a high-input total confinement system. Journal of Dairy Science 95, 15271544.CrossRefGoogle Scholar
Van Soest, P. J., Robertson, J. B. & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74, 35833597.Google Scholar
Vibart, R. E., Fellner, V., Burns, J. C., Huntington, G. B. & Green, J. T. Jr (2008). Performance of lactating dairy cows fed varying levels of total mixed ration and pasture. Journal of Dairy Research 75, 471480.CrossRefGoogle ScholarPubMed
Vibart, R. E., Washburn, S. P., Green, J. T. Jr, Benson, G. A., Williams, C. M., Pacheco, D. & Lopez-Villalobos, N. (2012). Effect of feeding strategy on milk production, reproduction, pasture utilization, and economics of autumn–calving dairy cows in eastern North Carolina. Journal of Dairy Science 95, 9971010.CrossRefGoogle ScholarPubMed
WexTech Systems, Inc. (2006). CPM-Dairy Version 3.0.8. Kennett Square, PA, USA/Ithaca, NY, USA/Chazy, NY, USA: The Center for Animal Health and Productivity, School of Veterinary Medicine, University of Pennsylvania/The Department of Animal Science, Cornell University/The William H. Miner Agricultural Research Institute.Google Scholar
White, S. L., Bertrand, J. A., Wade, M. R., Washburn, S. P., Green, J. T. & Jenkins, T. V. (2001). Comparison of fatty acid content of milk from Jersey and Holstein cows consuming pasture or total mixed ration. Journal of Dairy Science 84, 22952301.Google Scholar
Wyss, U., Maurer, J., Frey, Hj., Reinhard, Th., Bernet, A. & Hofstetter, P. (2011). Systemvergleich Milchproduktion Hohenrain. Aspekte der Milchqualität und der Saisonalität der Milcheinlieferungen. Agrarforschung Schweiz 2, 412417.Google Scholar
Zehetmeier, M., Baudracco, J., Hoffmann, H. & Heissenhuber, A. (2012). Dose increasing milk yield per cow reduce greenhouse gas emissions? A system approch. Animal 6, 154166.Google Scholar
Zimmermann, A. (2006). Kosten und Umweltwirkung der Milchviehfütterung. ART-Bericht no. 662. Ettenhausen, Switzerland: Forschungsanstalt Agroscope Reckenholz-Tänikon ART.Google Scholar