Skip to main content Accessibility help
×
Home

Cropping system intensification: vegetable pea can replace fallow between rainfed monsoon rice and irrigated spring rice

  • A. I. MALIK (a1), M. NASIM (a2), K. FLOWER (a3), M. A. HOSSAIN (a4), M. S. RAHMAN (a4), B. ANWAR (a4), M. O. ALI (a4), M. M. RAHMAN (a5) and W. ERSKINE (a1)...

Summary

The Eastern Gangetic Plain is among the world's most intensively farmed regions, where rainfed and irrigated agriculture coexist. While the region and especially Bangladesh is a major producer of rice (Oryza sativa L. ssp. indica), there is potential to further develop sustainable rice production systems. Specifically, there is scope to include a replacement crop for the short fallow between rice crops in the dominant cropping pattern of rainfed monsoon rice harvest followed by irrigated spring rice. The aim of the current research was to identify a suitable cool-season legume crop – pea (Pisum sativum L.) or lentil (Lens culinaris Medik. ssp. culinaris) – that could be grown in the brief period between rice crops. The study comprised four crop sequence experiments comparing legume cultivars differing in maturity grown in between both long and short duration rice cultivars. These experiments were done at the Bangladesh Rice Research Institute regional station at Rajshahi over three cropping cycles. This was followed by an evaluation of pea vs. fallow between rice crops on three farmers’ fields in one cropping cycle. Here it is demonstrated that green pod vegetable pea is one of the best options to intensify the rainfed monsoon rice–fallow–spring irrigated rice cropping system, notwithstanding other remunerative rabi cropping options that could displace boro rice. The inclusion of an extra crop, pea as green pod vegetable, increased farm productivity by 1·4-fold over the dominant cropping sequence (rice–fallow–rice) and farm net income by fourfold. The study highlighted the advantages in total system productivity and monetary return of crop intensification with the inclusion of a pea crop between successive rice crops instead of a fallow period.

Copyright

Corresponding author

*To whom all correspondence should be addressed. Email: william.erskine@uwa.edu.au

References

Hide All
Ahmed, A. (2016). Bangladesh Integrated Household Survey (BIHS) 2011–2012. Washington, DC, USA: IFPRI. Available online from: https://dataverse.harvard.edu/dataset.xhtml?persistentId=hdl:1902.1/21266 (accessed 27 April 2017).
Ahmed, G. J. U., Biswas, J. C., Roy, B. C., Rahman, M. B., Islam, M. S., Mahbub, M. A. A. & Biswas, J. K. (2006). Contribution of seedling age and planting time for bridging yield gap in rice. In BRRI-DAE 21 st joint workshop Sept 2006: Bridging the Rice Yield Gap for Food Security. Organized by Bangladesh Rice Research Institute, Department of Agricultural Extension. Gazipur, Bangladesh: Bangladesh Rice Research Institute.
Awadhwal, N. K., Gowda, C. L. L., Chauhan, Y. S., Pande, S., Flower, D. J., Haware, M. P., Rego, T. J., Saxena, N. P., Shanower, T. G. & Johansen, C. (2001). Establishment of Legumes following Rice - a Review. Natural Resource Management Program Report no. 2. Patancheru, India: International Crops Research Institute for the Semi-Arid Tropics, India.
Bremner, J. M. & Mulvaney, C. S. (1982). Total nitrogen. In Methods of Soil Analysis, Part 2, 2nd edn (Eds Page, A. L., Miller, R. H. & Keeney, D. R.), pp. 595624. Madison, WI, USA: American Society of Agronomy.
Byerlee, D. & White, R. (2000). Agricultural systems intensification and diversification through legumes: technological and policy options. In Linking Research and Marketing Opportunities for Pulses in the 21st Century. Proceedings of the Third International Food Legume Research Conference (Ed. Knight, R.), pp. 3146. Current Plant Science and Biotechnology in Agriculture vol. 34. Dordrecht, The Netherlands: Kluwer Academic Publishers.
Chartres, C. J. & Noble, A. (2015). Sustainable intensification: overcoming land and water constraints on food production. Food Security 7, 235245.
Christiansen, S., Ryan, J., Singh, M., Ates, S., Bahhady, F., Mohamed, K., Youssef, O. & Loss, S. (2015). Potential legume alternatives to fallow and wheat monoculture for Mediterranean environments. Crop and Pasture Science 66, 113121.
FAO (2002). World Agriculture: Towards 2015/30. Rome, Italy: FAO.
FAO (2014). FAOSTAT. Rome, Italy: FAO. Available online from: http://faostat.fao.org (accessed 27 April 2017).
Fischer, R. A., Byerlee, D. & Edmeades, G. O. (2014). Crop Yields and Global Food Security: Will Yield Increase continue to Feed the World? ACIAR Monograph No. 158. Canberra, Australia: Australian Centre for International Agricultural Research.
Fox, R. L., Olsen, R. A. & Rhoades, H. F. (1964). Evaluating the sulfur status of soils by plant and soil tests. Soil Science Society of America Journal 28, 243246.
Gumma, M. K., Thenkabail, P. S., Teluguntla, P., Rao, M. N., Mohammed, I. A. & Whitbread, A. M. (2016). Mapping rice-fallow cropland areas for short-season grain legumes intensification in South Asia using MODIS 250 m time series data. International Journal of Digital Earth 9, 9811003.
Hossain, M., Jaim, W. M. H., Alam, M. S. & Rahman, A. N. M. M. (2013). Rice Biodiversity in Bangladesh: Adoption, Diffusion and Disappearance of Varieties. A Statistical Report from Farm Survey in 2005. Dhaka, Bangladesh: BRAC.
Hossain, M. S., Roy, K. & Datta, D. K. (2014). Spatial and temporal variability of rainfall over the south-west coast of Bangladesh. Climate 2, 2846.
Joshi, K. D., Musa, A. M., Johansen, C., Gyawali, S., Harris, D. & Witcombe, J. R. (2007). Highly client-oriented breeding, using local preferences and selection, produces widely adapted rice varieties. Field Crops Research 100, 107116.
Kahlon, A. S. & Kapur, T. R. (1968). Differences in the form and intensity of input-mix and yield levels on small and large farm organizations in the I. A. D. P. District Ludhiana (Punjab) (a case study). Indian Journal of Agricultural Economics 23, 7983.
Karim, M. M., Siddika, A., Tonu, N. N., Delwar, M., Hossain, D. M., Meah, M. B., Kawanabe, T., Fujimoto, R. & Okazaki, K. (2014). Production of high yield short duration Brassica napus by interspecific hybridization between B. oleracea and B. rapa . Breeding Science 63, 495502.
Knudsen, D., Petterson, G. A. & Pratt, P. F. (1982). Lithium, sodium and potassium. In Methods of Soil Analysis, Part 2, 2nd edn (Eds Page, A. L., Miller, R. H. & Keeney, D. R.), pp. 225246. Madison, WI, USA: American Society of Agronomy.
Krupnik, T. J., Ahmed, Z. U., Timsina, J., Shahjahan, M., Kurishi, A. S. M. A., Miah, A. A., Rahman, B. M. S., Gathala, M. K. & McDonald, A. J. (2015). Forgoing the fallow in Bangladesh's stress-prone coastal deltaic environments: effect of sowing date, nitrogen, and genotype on wheat yield in farmers’ fields. Field Crops Research 170, 720.
Ladha, J. K., Rao, A. N., Raman, A. K., Padre, A. T., Dobermann, A., Gathala, M., Kumar, V., Saharawat, Y., Sharma, S., Piepho, H. P., Alam, M. M., Liak, R., Rajendran, R., Reddy, C. K., Parsad, R., Sharma, P. C., Singh, S. S., Saha, A. & Noor, S. (2016). Agronomic improvements can make future cereal systems in South Asia far more productive and result in a lower environmental footprint. Global Change Biology 22, 10541074.
Lichtfouse, E., Navarrete, M., Debaeke, P., Souchère, V., Alberola, C. & Ménassieu, J. (2009). Agronomy for sustainable agriculture. A review. Agronomy for Sustainable Development 29, 16.
Lindsay, W. L. & Norvell, W. A. (1978). Development of a DTPA soil test for Zn, Fe, Mn and Cu. Soil Science Society of America Journal 42, 421428.
Malik, A. I., Ali, M. O., Zaman, M. S., Flower, K., Rahman, M. M. & Erskine, W. (2016). Relay sowing of lentil (Lens culinaris subsp. culinaris) to intensify rice-based cropping. Journal of Agricultural Science, Cambridge 154, 850857.
Mandal, M. A. S. & Parker, D. E. (1995). Evolution and Implications of Decreased Public Involvement in Minor Irrigation Management in Bangladesh. Short Report Series on Locally Managed Irrigation, No. 11. Colombo, Sri Lanka: International Irrigation Management Institute.
Mannan, M. A., Bhuiya, M. S. U., Akhand, M. I. M., Rana, M. M. & Zahan, A. (2013). Growth and yield of basmati rice as affected by planting date in boro season. Journal of Science Foundation 11, 3742.
O'Dea, J. K., Jones, C. A., Zabinski, C. A., Miller, P. R. & Keren, I. N. (2015). Legume, cropping intensity, and N-fertilization effects on soil attributes and processes from an eight-year-old semiarid wheat system. Nutrient Cycling in Agroecosystems 102, 179194.
Olsen, S. R. & Sommers, L. E. (1982). Phosphorus. In Methods of Soil Analysis, Part 2, 2nd edn (Eds Page, A. L., Miller, R. H. & Keeney, D. R.), pp. 403430. Madison, WI, USA: American Society of Agronomy.
Rana, M. M., Mamun, M. A. A., Zahan, A., Ahmed, N. M. & Mridha, M. A. J. (2014). Effect of planting methods on the yield and yield attributes of short duration Aman rice. American Journal of Plant Sciences 5, 251255.
Singh, S. N., Sah, A. K., Singh, R. K., Singh, V. K. & Hasan, S. S. (2010). Diversification of rice (Oryza sativa L.)-based crop sequences for higher production potentials and economic returns in India's Central Uttar Pradesh. Journal of Sustainable Agriculture 34, 141152.
Subedi, K. D. (1997) Wheat intercropped with tori (Brassica campestris var. toria) and pea (Pisum sativum) in the subsistence farming system of the Nepalese hills. Journal of Agricultural Science, Cambridge 128, 283289.
Tilman, D., Balzer, C., Hill, J. & Befort, B. L. (2011). Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences 108, 2026020264.
Timsina, J. & Connor, D. J. (2001). Productivity and management of rice-wheat cropping systems: issues and challenges. Field Crops Research 69, 93132.
Walkley, A. & Black, I. A. (1934). An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science 37, 2937.
Zadoks, J. C., Chang, T. T. & Konzak, C. F. (1974). A decimal code for the growth stages of cereals. Weed Research 14, 415421.

Cropping system intensification: vegetable pea can replace fallow between rainfed monsoon rice and irrigated spring rice

  • A. I. MALIK (a1), M. NASIM (a2), K. FLOWER (a3), M. A. HOSSAIN (a4), M. S. RAHMAN (a4), B. ANWAR (a4), M. O. ALI (a4), M. M. RAHMAN (a5) and W. ERSKINE (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed