Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-24T02:11:45.535Z Has data issue: false hasContentIssue false

Computing statistical indices for hydrothermal times using weed emergence data

Published online by Cambridge University Press:  01 April 2011

R. CAO
Affiliation:
Faculty of Computer Science, Department of Mathematics, Campus de Eviña, s/n, A Coruña 15071, Spain
M. FRANCISCO-FERNÁNDEZ*
Affiliation:
Faculty of Computer Science, Department of Mathematics, Campus de Eviña, s/n, A Coruña 15071, Spain
A. ANAND
Affiliation:
Faculty of Computer Science, Department of Mathematics, Campus de Eviña, s/n, A Coruña 15071, Spain
F. BASTIDA
Affiliation:
Polytechnic School, Department of Agroforestry Science, University of Huelva, Campus Universitario de La Rábida, Carretera de Palos de la Frontera s/n 21071 La Rábida, Palos de la Frontera (Huelva), Spain
J. L. GONZÁLEZ-ANDÚJAR
Affiliation:
CSIC, Institute for Sustainable Agriculture, Córdoba 4084, Spain
*
*To whom all correspondence should be addressed. Email: mariofr@udc.es

Summary

Hydrothermal time (HTT) is a valuable environmental synthesis to predict weed emergence. However, weed scientists face practical problems in determining the best soil depth at which to calculate it. Two different types of measures are proposed for this: moment-based indices and probability density-based indices. Due to the monitoring process, it is not possible to observe the exact emergence time of every seedling; therefore, emergence times are not observed individually, seedling by seedling, but in an aggregated way. To address these facts, some new methods to estimate the proposed indices are derived, using grouped data estimators and kernel density estimators. The proposed methods have been exemplified with an emergence data set of Bromus diandrus. The results indicate that hydrothermal timing at 50 mm is more useful than that at 10 mm.

Type
Crops and Soils
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bradford, K. J. (2002). Applications of hydrothermal time to quantifying and modeling seed germination and dormancy. Weed Science 50, 248260.CrossRefGoogle Scholar
Cao, R. (1993). Bootstrapping the mean integrated squared error. Journal of Multivariate Analysis 45, 137160.CrossRefGoogle Scholar
Cao, R., Cuevas, A. & Fraiman, R. (1995). Minimum distance density-based estimation. Computational Statistics and Data Analysis 20, 611631.Google Scholar
Cao, R., Janssen, P. & Veraverbeke, N. (2001). Relative density estimation and local bandwidth selection with censored data. Computational Statistics and Data Analysis 36, 497510.Google Scholar
Colbach, N., Dürr, C., Roger-Estrade, J. & Caneill, J. (2005). How to model the effects of farming practices on weed emergence. Weed Research 45, 217.CrossRefGoogle Scholar
Dorado, J., Sousa, E., Calha, I. M., González-Andújar, J. L. & Fernández-Quintanilla, C. (2009). Predicting weed emergence in maize crops under two contrasting climatic conditions. Weed Research 49, 251260.CrossRefGoogle Scholar
Fernández-Quintanilla, C., Navarrete, L., González-Andújar, J. L., Fernández, A. & Sánchez, M. J. (1986). Seedling recruitment and age-specific survivorship and reproduction in populations of Avena sterilis ssp. ludoviciana. Journal of Applied Ecology 23, 945955.Google Scholar
Forcella, F., Benech-Arnold, R. L., Sánchez, R. & Ghersa, C. M. (2000). Modeling seedling emergence. Field Crops Research 67, 123139.Google Scholar
González-Manteiga, W., Cao, R. & Marron, J. S. (1996). Bootstrap selection of the smoothing parameter in nonparametric hazard rate estimation. Journal of the American Statistical Association 91, 11301140.Google Scholar
Grundy, A. C. (2003). Predicting weed emergence: a review of approaches and future challenges. Weed Research 43, 111.Google Scholar
Haj Seyed Hadi, M. R. & González-Andújar, J. L. (2009). Comparison of fitting weed seedling emergence models with nonlinear regression and genetic algorithm. Computers & Electronics in Agriculture 65, 1925.Google Scholar
Hunter, E. A., Glasbey, C. A. & Naylor, R. E. L. (1984). The analysis of data from germination tests. Journal of Agricultural Science, Cambridge 102, 207213.CrossRefGoogle Scholar
Izquierdo, J., González-Andújar, J. L., Bastida, F., Lezaun, J. A. & Sánchez del Arco, M. J. (2009). A thermal time model to predict corn poppy (Papaver rhoeas) emergence in cereal fields. Weed Science 57, 660664.CrossRefGoogle Scholar
Jones, M. C. & Sheather, S. J. (1991). Using nonstochastic terms to advantage in kernel-based estimation of integrated squared density derivatives. Statistics and Probability Letters 11, 511514.Google Scholar
Leblanc, M. L., Cloutier, D. C., Stewart, K. A. & Hamel, C. (2003). The use of thermal time to model common lambsquarters (Chenopodium album) seedling emergence in corn. Weed Science 51, 718724.CrossRefGoogle Scholar
Leguizamón, E. S., Fernández-Quintanilla, C., Barroso, J. & González-Andújar, J. L. (2005). Using thermal and hydrothermal time to model seedling emergence of Avena sterilis ssp. ludoviciana in Spain. Weed Research 45, 149156.CrossRefGoogle Scholar
Lesaffre, E., Komárek, A. & Declerck, D. (2005). An overview of methods for interval-censored data with an emphasis on applications in dentistry. Statistical Methods in Medical Research 14, 539552.Google Scholar
McGiffen, M., Spokas, K., Forcella, F., Archer, D., Poppe, S. & Figueroa, R. (2008). Emergence prediction of common groundsel (Senecio vulgaris). Weed Science 56, 5865.Google Scholar
Naylor, R. E. L. (1981). An evaluation of various germination indices for predicting differences in seed vigour in Italian ryegrass. Seed Science and Technology 9, 593600.Google Scholar
Onofri, A., Gresta, F. & Tei, F. (2010). A new method for the analysis of germination and emergence data of weed species. Weed Research 50, 187198.Google Scholar
Peto, R. (1973). Experimental survival curves for interval-censored data. Journal of the Royal Statistical Society, Series C: Applied Statistics 22, 8691.Google Scholar
R Development Core Team (2008). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.Google Scholar
Ritz, C., Pipper, C., Yndgaard, F., Fredlund, K. & Steinrücken, G. (2010). Modelling flowering of plants using time-to-event methods. European Journal of Agronomy 32, 155161.CrossRefGoogle Scholar
Royo-Esnal, A., Torra, J., Conesa, J. A., Forcella, F. & Recasens, J. (2010). Modeling the emergence of three arable bedstraw (Galium) species. Weed Science 58, 1015.CrossRefGoogle Scholar
Ruppert, D. (1987). What is kurtosis? An influence function approach. American Statistician 41, 15.Google Scholar
Schutte, B. J., Regnier, E. E., Harrison, S. K., Schmoll, J. T., Spokas, K. & Forcella, F. (2008). A hydrothermal seedling emergence model for giant ragweed (Ambrosia trifida). Weed Science 56, 555560.CrossRefGoogle Scholar
Silverman, B. W. (1986). Density Estimation for Statistics and Data Analysis. Monographs in Statistics and Applied Probability. London: Chapman and Hall.Google Scholar
Spokas, K. & Forcella, F. (2009). Software tools for weed seed germination modeling. Weed Science 57, 216227.Google Scholar
Sun, J. (2006). The Statistical Analysis of Interval-censored Failure Time Data. Statistics for Biology and Health. New York: Springer.Google Scholar
Turnbull, B. (1976). The empirical distribution function with arbitrarily grouped, censored and truncated data. Journal of the Royal Statistical Society, Series B: Methodology 38, 290295.Google Scholar
Wand, M. P. & Jones, M. C. (1995). Kernel Smoothing. CRC Monographs on Statistics and Applied Probability. London: Chapman and Hall.CrossRefGoogle Scholar