Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-19T13:12:49.367Z Has data issue: false hasContentIssue false

Bacteria of the ovine rumen IV. Effect of change of diet on the predominant type of cellulose-digesting bacteria

Published online by Cambridge University Press:  27 March 2009

L. Gouws
Affiliation:
National Chemical Research Laboratory, South African Council for Scientific and Industrial Research, Pretoria, South Africa
A. Kistner
Affiliation:
National Chemical Research Laboratory, South African Council for Scientific and Industrial Research, Pretoria, South Africa

Extract

It has been repeatedly shown that bacterial populations of different composition become established in the rumen of animals conditioned to different diets (Bryant & Burkey, 1953; Maki & Foster, 1957; Hungate, 1957; Warner, 1962). On changing ruminants from one diet to another, a reproducible physiological response of the animal to the new diet is often obtained only after a lapse of some weeks. This has been attributed to fluctuations in the levels of different groups of bacteria participating in the digestion of the ration before a new equilibrium between the species is attained. However, little is known about the rate at which these changes occur, mainly because the counting methods for specific bacteria which depend upon the isolation and cultural identification of the organisms are too laborious and time-consuming for examining samples of rumen contents at short intervals after a change of diet.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1965

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bryant, M. P. & Burkey, L. A. (1953). J. Dairy Sci. 36, 218.CrossRefGoogle Scholar
Bryant, M. P. & Small, N. (1956). J. Bact. 72, 16.CrossRefGoogle Scholar
Bryant, M. P., Small, N., Bouma, C. & Robinson, I. M. (1958). J. Bact. 76, 529.CrossRefGoogle Scholar
Gilchrist, F. M. C. & Kistner, A. (1962). J. Agric. Sci. 59, 77.CrossRefGoogle Scholar
Hungate, R. E. (1957). Canad. J. Microbiol. 3, 289.CrossRefGoogle Scholar
Kistner, A. (1960). J. Gen. Microbiol. 23, 565.CrossRefGoogle Scholar
Kistner, A. & Gouws, L. (1964). J. Gen. Microbiol. 34, 447.CrossRefGoogle Scholar
Kistner, A., Gouws, L. & Gilchrist, F. M. C. (1962). J. Agric. Sci. 59, 85.CrossRefGoogle Scholar
Lloyd, L. E., Peckham, H. E. & Crampton, E. W. (1956). J. Anim. Sci. 15, 846.Google Scholar
Maki, L. R. & Foster, E. M. (1957). J. Dairy Sci. 40, 905.CrossRefGoogle Scholar
Nicholson, J. W. G., Haynes, E. H., Warner, R. G. & Loosli, J. K. (1956). J. Anim. Sci. 15, 1172.CrossRefGoogle Scholar
Sijpesteijn, A. K. (1951). J. Gen. Microbiol. 5, 869.CrossRefGoogle Scholar
Warner, A. C. I. (1962). J. Gen. Microbiol. 28, 129.CrossRefGoogle Scholar