Skip to main content Accessibility help

Application of a SUGAR model to analyse sugar accumulation in peach cultivars that differ in glucose–fructose ratio

  • B. H. WU (a1), B. QUILOT (a2), M. GÉNARD (a3), S. H. LI (a1), J. B. ZHAO (a4), J. YANG (a1) and Y. Q. WANG (a1)...


A SUGAR model, which was established to predict the partitioning of carbon into sucrose, glucose, fructose and sorbitol in fruit mesocarp of peach cultivars (Prunus persica (L.) Batch) with normal glucose: fructose ratio (G:F) of 0·8–1·5, was evaluated and extended for peach cultivars with a high G:F ratio of 1·5–7·8. The extended model (SUGARb) is more generic and assumes a high G:F ratio to be due to preferential transformation of sorbitol into glucose, preferential utilization of fructose or preferential conversion of fructose into glucose. The simulated seasonal variations in sugars via the SUGARb-model-matched experimental data for three normal and three high G:F cultivars well, and accurately exhibited G:F ratio characteristics. The relative rates of sucrose transformation into glucose and fructose differed according to cultivar but not according to G:F status. Compared with hexosephosphate interconversion, a lower production rate of fructose than glucose from sorbitol, and/or a higher utilization rate of fructose than that of glucose might be preferential alternatives for forming high G:F ratios in the high G:F cultivars studied in the present study, which is discussed in the light of recent results on enzyme activities.


Corresponding author

*To whom all correspondence should be addressed. Email:


Hide All
Bates, D. M. & Chambers, J. M. (1992). Nonlinear models. In Statistical Models in S (Eds Chambers, J. M. & Hastie, T. J.), pp. 421454. New York: Chapman & Hall.
Berüter, J. (2004). Carbohydrate metabolism in two apple genotypes that differ in malate accumulation. Journal of Plant Physiology 161, 10111029.
Borsani, J., Budde, C. O., Porrini, L., Lauxmann, M. A., Lombardo, V. A., Murray, R., Andreo, C. S., Drincovich, M. F. & Lara, M. V. (2009). Carbon metabolism of peach fruit after harvest: changes in enzymes involved in organic acid and sugar level modifications. Journal of Experimental Botany 60, 18231837.
Chapman, G. W. Jr. & Horvat, R. J. (1990). Changes in nonvolatile acids, sugars, pectin and sugar composition of pectin during peach (cv. Monroe) maturation. Journal of Agriculture and Food Chemistry 38, 383387.
Dai, N., German, M. A., Matsevitz, T., Hanael, R., Swartzberg, D., Yeselson, Y., Petreikov, M., Schaffer, A. A. & Granot, D. (2002). LeFRK2, the gene encoding the major fructokinase in tomato fruits, is not required for starch biosynthesis in developing fruits. Plant Science 162, 423430.
DeJong, T. M., Doyle, J. F. & Day, K. R. (1987). Seasonal patterns of reproductive and vegetative sink activity in early and late maturing peach (Prunus persica) cultivars. Physiologia Plantarum 71, 8388.
DeJong, T. M. & Goudriaan, J. (1989). Modeling peach fruit growth and carbohydrate requirements: reevaluation of the double-sigmoid growth pattern. Journal of the American Society for Horticultural Science 114, 800804.
Dirlewanger, E., Moing, A., Rothan, C., Svanella, L., Pronier, V., Guye, A., Plomion, C. & Monet, R. (1999). Mapping QTLs controlling fruit quality in peach (Prunus persica (L.) Batsch). Theoretical and Applied Genetics 98, 1831.
Doty, T. E. (1976). Fructose sweetness: a new dimension. Cereal Foods World 21, 6263.
Escobar-Gutiérrez, A. J. & Gaudillère, J. P. (1994). Variability in sorbitol: sucrose ratios in mature leaves of different peach cultivars. Journal of the American Society for Horticultural Science 119, 321324.
Escobar-Gutiérrez, A. J. & Gaudillère, J. P. (1997). Carbon partitioning in source leaves of peach, a sorbitol-synthesizing species, is modified by photosynthetic rate. Physiologia Plantarum 100, 353360.
Escobar-Gutiérrez, A. J., Zipperlin, B., Carbonne, F., Moing, A. & Gaudillère, J. P. (1998). Photosynthesis, carbon partitioning and metabolite content during drought stress in peach seedlings. Australian Journal of Plant Physiology 25, 197205.
Esti, M., Messia, M. C., Sinesio, F., Nicotra, A., Conte, L., la Notte, E. & Palleschi, G. (1997). Quality evaluation of peaches and nectarines by electrochemical and multivariate analyses: relationships between analytical measurements and sensory attributes. Food Chemistry 60, 659666.
Génard, M., Lescourret, F., Gomez, L. & Habib, R. (2003). Changes in fruit sugar concentrations in response to assimilate supply, metabolism and dilution: a modeling approach applied to peach fruit (Prunus persica). Tree Physiology 23, 373385.
Génard, M., Lescourret, F., Reich, M., Albagnac, G. & Audergon, J. M. (2006). Modeling the apricot sugar contents in relation to fruit growth. Acta Horticulturae 701, 517522.
Génard, M. & Souty, M. (1996). Modeling the peach sugar contents in relation to fruit growth. Journal of the American Society for Horticultural Science 121, 11221131.
Grechi, I., Hilgert, N., Génard, M. & Lescourret, F. (2008). Assessing the peach fruit refractometric index at harvest with a simple model based on fruit growth. Journal of the American Society for Horticultural Science 133, 178187.
Kanayama, Y., Kogawa, M., Yamaguchi, M. & Kanahama, K. (2005). Fructose content and the activity of fructose-related enzymes in the fruit of eating-quality peach cultivars and native-type peach cultivars. Journal of the Japanese Society for Horticultural Science 74, 431436.
Kortstee, A. J., Appeldoorn, N. J. G., Oortwijn, M. E. P. & Visser, R. G. F. (2007). Differences in regulation of carbohydrate metabolism during early fruit development between domesticated tomato and two wild relatives. Planta 226, 929939.
Kulp, K., Lorenz, K. & Stone, M. (1991). Functionality of carbohydrates ingredients in bakery products. Food Technology 45, 136142.
Lo Bianco, R., Rieger, M. & Sung, S. S. (1999). Carbohydrate metabolism of vegetative and reproductive sinks in the late-maturing peach cultivar ‘Encore’. Tree Physiology 19, 103109.
Lo Bianco, R., Rieger, M. & Sung, S. S. (2000). Effect of drought on sorbitol and sucrose metabolism in sinks and sources of peach. Physiologia Plantarum 108, 7178.
Moing, A., Carbonne, F., Rashad, M. H. & Gaudillère, J. P. (1992). Carbon fluxes in mature peach leaves. Plant Physiology 100, 18781884.
Moing, A., Carbonne, F., Zipperlin, B., Svanella, L. & Gaudillère, J. P. (1997). Phloem loading in peach: symplastic or apoplastic? Physiologia Plantarum 101, 489496.
Morandi, B., Grappadelli, L. C., Rieger, M. & Lo Bianco, R. (2008). Carbohydrate availability affects growth and metabolism in peach fruit. Physiologia Plantarum 133, 229241.
Moriguchi, T., Sanada, T. & Yamaki, S. (1990 a). Seasonal fluctuations of some enzymes relating to sucrose and sorbitol metabolism in peach fruit. Journal of the American Society for Horticultural Science 115, 278281.
Moriguchi, T., Ishizawa, Y. & Sanada, T. (1990 b). Differences in sugar composition in Prunus persica fruit and the classification by the Principal Component Analysis. Journal of the Japanese Society for Horticultural Science 59, 307312.
Nadwodnik, J. & Lohaus, G. (2008). Subcellular concentrations of sugar alcohols and sugars in relation to phloem translocation in Plantago major, Plantago maritime, Prunus persica, and Apium graveolens. Planta 227, 10791089.
Niu, J., Zhao, J. B., Wu, B. H., Li, S. H., Liu, G. J. & Jiang, Q. (2006). Sugar and acid contents in peach and nectarine derived from different countries and species. Acta Horticulturea Sinica 33, 611.
Pangborn, R. M. (1963). Relative taste of selected sugars and organic acids. Journal of Food Science 28, 726733.
Quilot, B., Génard, M., Kervella, J. & Lescourret, F. (2004). Analysis of genotypic variation in fruit flesh total sugar content via an ecophysiological model applied to peach. Theoretical and Applied Genetics 109, 440449.
Robertson, J. A., Horvat, R. J., Lyon, B. G., Meredith, F. I., Senter, S. D. & Okie, W. R. (1990). Comparison of quality characteristics of selected yellow- and white-fleshed peach cultivars. Journal of Food Science 55, 13081311.
Rohwer, J. M. & Botha, F. C. (2001). Analysis of sucrose accumulation in the sugar cane culm on the basis of in vitro kinetic data. Biochemical Journal 358, 437445.
Schaffer, A. A., Petreikov, M., Miron, D., Fogelman, M., Spiegelman, M., Bnei-Moshe, Z., Shen, S., Granot, D., Hadas, R., Dai, N., Levin, I., Bar, M., Friedman, M., Pilowsky, M., Gilboa, N. & Chen, L. (1999). Modification of carbohydrate content in developing tomato fruit. HortScience 34, 10241027.
Suzuki, Y., Odanaka, S. & Kanayama, Y. (2001). Fructose content and fructose-related enzyme activity during the fruit development of apple and Japanese pear. Journal of the Japanese Society for Horticultural Science 70, 1620.
Uys, L., Botha, F. C., Hofmeyr, J. S. & Rohwer, J. M. (2007). Kinetic model of sucrose accumulation in maturing sugarcane culm tissue. Phytochemistry 68, 23752392.
Vizzotto, G., Pinton, R., Varanini, Z. & Costa, G. (1996). Sucrose accumulation in developing peach fruit. Physiologia Plantarum 96, 225230.
Wu, B. H., Quilot, B., Kervella, J., Génard, M. & Li, S. H. (2003). Analysis of genotypic variation of sugar and acid contents in peaches and nectarines through the Principle Component Analysis. Euphytica 132, 375384.

Application of a SUGAR model to analyse sugar accumulation in peach cultivars that differ in glucose–fructose ratio

  • B. H. WU (a1), B. QUILOT (a2), M. GÉNARD (a3), S. H. LI (a1), J. B. ZHAO (a4), J. YANG (a1) and Y. Q. WANG (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed