Hostname: page-component-84b7d79bbc-5lx2p Total loading time: 0 Render date: 2024-07-31T13:33:17.147Z Has data issue: false hasContentIssue false

Effect of irrigation uniformity on evapotranspiration and onion yield

Published online by Cambridge University Press:  27 January 2010

M. JIMÉNEZ*
Affiliation:
Centro Regional de Estudios del Agua. Castilla, La Mancha University. Campus Universitario s/n, E02071, Albacete, Spain
J. A. DE JUAN
Affiliation:
Centro Regional de Estudios del Agua. Castilla, La Mancha University. Campus Universitario s/n, E02071, Albacete, Spain
J. M. TARJUELO*
Affiliation:
Centro Regional de Estudios del Agua. Castilla, La Mancha University. Campus Universitario s/n, E02071, Albacete, Spain
J. F. ORTEGA
Affiliation:
Centro Regional de Estudios del Agua. Castilla, La Mancha University. Campus Universitario s/n, E02071, Albacete, Spain
*
*To whom all correspondence should be addressed. Email: jose.tarjuelo@uclm.es

Summary

The main objective of the current study was to analyse how water application through a sprinkler irrigation system influences yield of onion (Allium cepa L.), taking into account water application heterogeneity and the effects on theoretical crop evapotranspiration (ETc). Field experiments were conducted on commercial onion plots, irrigated with a permanent sprinkler irrigation system, located in Albacete, Spain, over two irrigation seasons. Two experimental plots were selected each study year: plot A (PA), in which water was applied heterogeneously by using sprinklers with different nozzle combinations, and plot B (PB, used as the reference plot) in which the four sprinklers were maintained with the same nozzle combinations. Both experimental plots were divided into 25 subplots with the aim of studying the water distribution (measured as Christiansen uniformity coefficient (CU)), the impact on the actual evapotranspiration (ETa) and the yield obtained. Irrigation was scheduled using a daily simplified water balance method within the root area following the approach of the Food and Agriculture Organization. In the present study, sprinkler irrigation in PA resulted in lower CU (65–82% lower in 2002 and 59–79% lower in 2005) compared with PB (78–92% lower in 2002 and 79–93% lower in 2005). Between 30 May and 18 August 2002, the estimated crop water requirements in PA in the absence of water deficit was 22 mm over the accumulated value of ETc (491 v. 469 mm), while estimated crop water requirements under water deficit were 187 mm below ETc (282 v. 469 mm). In 2005, between 29 May and 25 August, ETa without water deficit was more similar to ETc (458 v. 444 mm) but Eta under water deficit was 242 mm. The greater uniformity of water distribution in PB was translated into a greater uniformity of yield distribution. A smaller range in yield was observed in PB when compared with PA. No statistically significant differences were observed between PA and PB in the crop quality parameters bulb moisture content, total soluble solids, pH and total acidity.

Type
Crops and Soils
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Al-Jamal, M. S., Ball, S. & Sammis, T. W. (2001). Comparison of sprinkler, trickle and furrow irrigation efficiencies for onion production. Agricultural Water Management 46, 253266.CrossRefGoogle Scholar
Al-Jamal, M. S., Sammis, T. W., Ball, S. & Smeal, D. (1999). Yield-based irrigated onion crop coefficients. ASAE Applied Engineering in Agriculture 15, 659668.CrossRefGoogle Scholar
Al-Jamal, M. S., Sammis, T. W., Ball, S. & Smeal, D. (2000). Computing the crop water production function for onion. Agricultural Water Management 46, 2941.CrossRefGoogle Scholar
Allen, R. G., Pereira, L. S., Raes, D. & Smith, M. (1998). Crop Evapotranspiration. Guidelines for Computing Crop Water Requirements. FAO Irrigation and Drainage Paper 56. Rome: Food and Agriculture Organization.Google Scholar
Ayars, J. E., Hutmacher, R. B., Hoffman, G. J., Letey, J., Ben-Asher, J. & Solomon, K. H. (1990). Response of sugar beet to non-uniform irrigation. Irrigation Science 11, 101109.Google Scholar
Bandyopadhyay, P. K., Mallick, S. & Rana, S. K. (2003). Actual evapotranspiration and crop coefficients of onion (Allium cepa L.) under varying soil moisture levels in the humid tropics of India. Tropical Agriculture 80, 8390.Google Scholar
Begum, R. W., Malik, S. A., Rahman, M., Anowar, M. N. & Khan, M. N. (1990). Yield response on onion as influenced by different soil moisture regimes. Bangladesh Journal of Agricultural Research 15, 6469.Google Scholar
Bekele, S. & Tilahun, K. (2007). Regulated deficit irrigation scheduling of onion in a semiarid region of Ethiopia. Agricultural Water Management 89, 148152.CrossRefGoogle Scholar
Bessembinder, J. J. E., Leffelaar, P. A., Dhindwal, A. S. & Ponsioen, T. C. (2005). Which crop and which drop, and the scope for improvement of water productivity. Agricultural Water Management 73, 113130.CrossRefGoogle Scholar
Bossie, M., Tilahun, K. & Hordofa, T. (2009). Crop coefficient and evapotranspiration of onion at Awash Melkassa, Central Rift Valley of Ethiopia. Irrigation and Drainage Systems 23, 110.CrossRefGoogle Scholar
Brennan, D. (2008). Factors affecting the economic benefits of sprinkler uniformity and their implications for irrigation water use. Irrigation Science 26, 109119.Google Scholar
Cavero, J., Jiménez, L., Puig, M., Faci, J. M. & Martínez-Cob, A. (2008). Maize growth and yield under daytime and nighttime solid-set sprinkler irrigation. Agronomy Journal 100, 15731579.CrossRefGoogle Scholar
Chopade, S. O., Bansode, P. N. & Hiwase, S. S. (1998). Studies on fertilizer and water management to onion. PKV Research Journal 22, 4447.Google Scholar
Christiansen, J. E. (1942). Irrigation by Sprinkling. California Agricultural Experimental Station Bulletin 670. Berkeley, CA: University of California.Google Scholar
De Juan, J. A., Ortega, J. F. & Tarjuelo, J. M. (2003). Sistemas de cultivo. Evaluación de itinerarios técnicos. Madrid, Spain: Mundi Prensa.Google Scholar
Dechmi, F., Playán, E., Cavero, J., Faci, J. M. & Martínez–Cob, A. (2003). Wind effects on solid-set sprinkler irrigation depth and yield of maize (Zea mays L.). Irrigation Science 22, 6777.CrossRefGoogle Scholar
Dechmi, F., Playán, E., Cavero, J., Martínez-Cob, A. & Faci, J. M. (2004). Coupled crop and solid set sprinkler simulation model: II. Model application. Journal of Irrigation and Drainage Engineering 130, 510519.Google Scholar
Doorenbos, J. & Kassam, A. H. (1979). Yield Response to Water. FAO Irrigation and Drainage Paper 33. Rome: Food and Agriculture Organization.Google Scholar
Doorenbos, J. & Pruitt, W. O. (1977). Crop Water Requirements. FAO Irrigation and Drainage Paper 24. Rome: Food and Agriculture Organization.Google Scholar
Drost, D., Grossl, P. & Koenig, R. (1996). Nutrient management of onions: a Utah perspective. In Proceedings of the International Conference on Evapotranspiration and Irrigation Scheduling (Eds Camp, C. R., Sadler, E. J. & Yoder, R. E.), pp. 5459. San Antonio, TX: ASAE, The International Commission on Irrigation and Drainage.Google Scholar
Ells, J. E., Kruse, E. G., McSay, A. E., Neal, C. M. U. & Horn, R. A. (1986). A comparison of five irrigation methods on onions. HortScience 21, 13491351.CrossRefGoogle Scholar
Ells, J. E., Mcsay, A. E., Soltanpour, P. N., Schweissing, F. C., Bartolo, M. E. & Kruse, E. G. (1993). Onion irrigation and nitrogen leaching in the Arkansas Valley of Colorado 1990–1991. HortTechnology 3, 184187.Google Scholar
Enciso, J., Wiendenfeld, B., Jifon, J. & Nelson, S. (2009). Onion yield and quality response to two irrigation scheduling strategies. Scientia Horticulturae 120, 301305.CrossRefGoogle Scholar
FAO (1998). World Reference Base for Soil Resources. Rome: Food and Agriculture Organization.Google Scholar
FAO (2004). FAO Statistical Database (online). Date of consultation: 15 March 2008. http://faostat.fao.org (verified 9 October 2009).Google Scholar
Feller, C., Bleiholder, H., Burhr, L., Hack, H., Hess, M., Klose, R., Meier, U., Stauss, R., Van Den Boom, T. & Weber, E. (1995). Phänologische Entwicklungsstadien von Gemüsepflazen: I. Zwiebel-, Wurzel-, Knollen- und Blattgemüse. Nachrichtenblatt des Deutschen Pflanzenschutzdienstes 47, 193206.Google Scholar
Gupta, S. C. & Larson, W. E. (1979). Estimating soil water retention characteristics from particle size distribution, organic matter content and bulk density. Water Resources Research 15, 16331635.Google Scholar
Hexem, R. W. & Heady, E. O. (1978). Water Production Functions for Irrigated Agriculture. Ames, IA: Iowa State University Press.Google Scholar
ISO (2004). ISO 15886-3. Agricultural Irrigation Equipment: Sprinklers. Part 3: Characterization of Distribution and Test Methods. Geneva, Switzerland: International Organization for Standardization.Google Scholar
Johnston, K., Ver Hoef, J. M., Krivoruchko, K. & Lucas, N. (2003). ArcGis 9. Using ArcGIS Geostatistical Analyst. Redlands, CA: ESRI.Google Scholar
Jones, H. A. & Mann, L. K. (1963). Onion and their Allies. London, UK: Leonard Hill Books.Google Scholar
Kadayifci, A., Tuylu, G. I., Ucar, Y. & Cakmak, B. (2005). Crop water use of onion (Allium cepa L.) in Turkey. Agricultural Water Management 72, 5968.CrossRefGoogle Scholar
Keller, J. & Bliesner, R. D. (1990). Sprinkle and Trickle Irrigation. New York, NY: Van Nostrand Reinhold.Google Scholar
Khalil, M., Sakai, M., Mizoguchi, M. & Miyazaki, T. (2003). Current and prospective applications of Zero Flux Plane (ZFP) method. Journal of the Japanese Society of Soil Physics 95, 7590.Google Scholar
Kincaid, D. C., Solomon, K. H. & Oliphant, J. C. (1996). Drop size distribution for irrigation sprinklers. Transactions of the ASAE 39, 839845.CrossRefGoogle Scholar
Kruse, E. G. (1978). Describing irrigation efficiency and uniformity. Journal of the ASCE Irrigation Drainage Division 104, 3541.Google Scholar
Kumar, S., Imtiyaz, M., Kumar, A. & Singh, R. (2007 a). Response of onion (Allium cepa L.) to different levels of irrigation water. Agricultural Water Management 89, 161166.Google Scholar
Kumar, S., Imtiyaz, M. & Kumar, A. (2007 b). Effect of differential soil moisture and nutrient regimes on postharvest attributes of onion (Allium cepa L.). Scientia Horticulturae 112, 121129.CrossRefGoogle Scholar
Lai, S. H., Chen, N. C., Shanmugasundaram, S. & Tsov, S. C. S. (1994). Evaluation of onion cultivars at AVRDC. Acta Horticulturae 358, 221230.CrossRefGoogle Scholar
Letey, J., Vaux, H. J. & Feinerman, E. (1984). Optimum crop water application as affected by uniformity of water infiltration. Agronomy Journal 76, 435441.CrossRefGoogle Scholar
Li, J. & Rao, M. (2000). Sprinkler water distributions as affected by winter wheat canopy. Irrigation Science 20, 2935.CrossRefGoogle Scholar
López Urrea, R., López Córcoles, H., López Fuster, P., Fabeiro, C. & Martín De Santa Olalla, F. (2001). Ensayos de riego deficitario controlado. In Anuario Técnico ITAP 2000 (Coord. P. López Fuster), pp. 69–112. Albacete, Spain: Diputación de Albacete (Ed.).Google Scholar
López Urrea, R., Martín De Santa Olalla, F., Montoro, A. & López Fuster, P. (2009). Single and dual crop coefficients and water requirements for onion (Allium cepa L.) under semiarid conditions. Agricultural Water Management 96, 10311036.Google Scholar
Louie, M. J. & Selker, J. S. (2000). Sprinkler head maintenance effects on water application uniformity. Journal of Irrigation and Drainage Engineering 126, 142148.Google Scholar
Mantovani, E. C., Villalobos, F. J., Orgaz, F. & Fereres, E. (1995). Modeling the effects of sprinkler irrigation uniformity on crop yield. Agricultural Water Management 27, 243257.CrossRefGoogle Scholar
MAPA (1992). Normas de Calidad para Frutas y Hortalizas. Madrid, Spain: Ministerio de Agricultura, Pesca y Alimentación.Google Scholar
MAPA (2006). Anuario de Estadística Agroalimentaria 2006. Madrid, Spain: Ministerio de Agricultura, Pesca y Alimentación.Google Scholar
Martín De Santa Olalla, F., Domínguez-Padilla, A. & López, R. (2004). Production and quality of the onion crop (Allium cepa L.) cultivated under controlled deficit irrigation conditions in a semi-arid climate. Agricultural Water Management 68, 7789.Google Scholar
Martín De Santa Olalla, F. J., De Juan, J. A. & Fabeiro, C. (1994). Growth and production of onion crop (Allium cepa L.) under different irrigation scheduling. European Journal of Agronomy 3, 8592.CrossRefGoogle Scholar
Martínez, R. S. (2004). La distribución del agua bajo riego por aspersión estacionario y su influencia sobre el rendimiento del cultivo de maíz (Zea mays L.). Ph.D. thesis, La Mancha University, Albacete, Spain.Google Scholar
McLean, R. K., Sri Ranjan, R. & Klassen, G. (2000). Spray evaporation losses from sprinkler irrigation systems. Canadian Agricultural Engineering 42, 115.Google Scholar
Merriam, J. L. & Keller, J. (1978). Farm Irrigation System Evaluation: A Guide for Management. Logan, UT: Utah State University.Google Scholar
Merriam, J. L., Shearer, M. N. & Burt, C. M. (1980). Evaluating irrigation systems and practices. In Design and Operation of Farm Irrigation Systems (Ed. Jensen, M. E.), pp. 721760. ASAE Monograph 3. St. Joseph, MI: American Society of Agricultural Engineers.Google Scholar
Namesny, A. (1996). Post-recolección de Hortalizas II: Bulbos, Tubérculos, Rizomas. Reus, Tarragona, Spain: Ediciones de Horticultura.Google Scholar
Orta, A. H. & Ener, M. (2001). Irrigation scheduling of onion in Turkey. Journal of Biological Sciences 1, 735736.Google Scholar
Ortega, J. F., De Juan, J. A. & Tarjuelo, J. M. (2005). Improving water management: the irrigation advisory service of Castilla-La Mancha (Spain). Agricultural Water Management 77, 3758.Google Scholar
Papadakis, J. (1966). Climates of the World and their Agricultural Potentialities. Buenos Aires, Argentina: published by the author.Google Scholar
Pereira, L. S. & Allen, R. G. (1999). Crop water requirements. In CIGR Handbook of Agricultural Engineering, Vol. I: Land and Water Engineering (Eds van Lier, H. N., Pereira, L. S. & Steiner, F. R.), pp. 213262. St. Joseph, MI: ASAE.Google Scholar
Pulido-Calvo, I., Roldán, J., López-Luque, R. & Gutiérrez-Estrada, J. C. (2003). Demand forecasting for irrigation water distribution systems. Journal of Irrigation and Drainage Engineering 129, 422431.Google Scholar
Rajput, T. B. S. & Patel, N. (2006). Water and nitrate movement in drip-irrigated onion under fertigation and irrigation treatments. Agricultural Water Management 79, 293311.CrossRefGoogle Scholar
Ramos, G. (1999). Determinación de funciones de producción y comportamiento del cultivo de la cebolla bajo diferentes láminas de riego y dosis de fertilización fosforada en San Juan de Lagunillas, Mérida, Venezuela. Revista de la Facultad de Agronomía (LUZ) 16, 3851.Google Scholar
Rawls, W. J., Brakensiek, D. L. & Saxton, K. E. (1982). Estimation of soil water properties. Transactions of the ASAE 25, 13161320.Google Scholar
Reca, J., Roldán, J., Alcaide, M., López, R. & Camacho, E. (2001). Optimisation model for water allocation in deficit irrigation systems II. Application to the Bémbezar irrigation system. Agricultural Water Management 48, 117132.CrossRefGoogle Scholar
Ruelle, P., Mailhol, J. C., Quinones, H. & Granier, J. (2003). Using NIWASAVE to simulate impacts of irrigation heterogeneity on yield and nitrate leaching when using a travelling raingun system in a shallow soil context in Charente (France). Agricultural Water Management 63, 1535.Google Scholar
Saha, U. K., Khan, M. S. I., Haider, J. & Saha, R. R. (1997). Yield and water use of onion under different irrigation schedules in Bangladesh. Japanese Journal of Tropical Agriculture 41, 268274.Google Scholar
Sarkar, S., Goswami, S. B., Mallick, S. & Nanda, M. K. (2008). Different indices to characterize water use pattern of micro-sprinkler irrigated onion (Allium cepa L.). Agricultural Water Management 95, 625632.CrossRefGoogle Scholar
Seginer, I., Nir, D. & Von Bernuth, R. D. (1991). Simulation of wind-distorted sprinkler patterns. Journal of Irrigation and Drainage Engineering, ASCE 117, 285306.CrossRefGoogle Scholar
Sharma, O. L., Katole, N. S. & Gautam, K. M. (1994). Effect of irrigation schedules and nitrogen levels on bulb yield and water use by onion (Allium cepa L.). Agricultural Science Digest Karnal 14, 1518.Google Scholar
Shock, C. C., Feibert, E. B. G. & Saunders, L. D. (1998). Onion yield and quality affected by soil water potential as irrigation threshold. HortScience 33, 11881191.Google Scholar
Shock, C. C., Feibert, E. B. G. & Saunders, L. D. (2000 a). Irrigation criteria for drip-irrigated onions. HortScience 35, 6366.CrossRefGoogle Scholar
Shock, C. C., Feibert, E. B. G. & Saunders, L. D. (2000 b). Onion storage decomposition unaffected by late-season irrigation reduction. HortTechnology 10, 176178.CrossRefGoogle Scholar
Shock, C. C., Feibert, E. B. G. & Saunders, L. D. (2007). Short duration water stress produces multiple center onion bulbs. HortScience 42, 14501455.Google Scholar
Stern, J. & Bresler, E. (1983). Nonuniform sprinkler irrigation and crop yield. Irrigation Science 4, 1729.CrossRefGoogle Scholar
Tarjuelo, J. M., Carrión, P. & Valiente, M. (1994). Simulación de la distribución del riego por aspersión en condiciones de viento. Investigación agraria: Producción y Protección Vegetal 9, 255271.Google Scholar
Webster, R. & Oliver, M. A. (2001). Geostatistics for Environmental Scientist. Chichester, West Sussex, UK: John Wiley and Sons Ltd.Google Scholar
Woldetsadil, K., Gertsson, U. & Ascard, J. (2003). Shallot yield quality and storability as affected by irrigation and nitrogen. Journal of Horticultural Science and Biotechnology 78, 549553.CrossRefGoogle Scholar
Wu, P. I. & Shimabuku, R. S. (1996). Water Quality and Nitrogen Management for Irrigated Agriculture in Hawaii. Progress Report 1996. Honolulu, HI: Water Quality Project.Google Scholar
Zhang, R. (2005). Applied Geostatistics in Environmental Science. Monmouth Junction, NJ: Science Press USA Inc.Google Scholar