Hostname: page-component-7479d7b7d-8zxtt Total loading time: 0 Render date: 2024-07-12T01:38:34.348Z Has data issue: false hasContentIssue false

Concentrate levels associated with a new genotype of cactus (Opuntia stricta [Haw]. Haw.) cladodes in the diet of lactating dairy cows in a semi-arid region

Published online by Cambridge University Press:  28 March 2019

T. A. Paula
Affiliation:
Department of Animal Science, Federal Rural University of Pernambuco, 52171900, Recife, PE, Brazil
A. S. C. Véras
Affiliation:
Department of Animal Science, Federal Rural University of Pernambuco, 52171900, Recife, PE, Brazil
S. I. Guido
Affiliation:
Agronomic Institute of Pernambuco, 50761000, Recife, PE,Brazil
J. C. C. Chagas*
Affiliation:
Department of Animal Science, Federal Rural University of Pernambuco, 52171900, Recife, PE, Brazil Swedish University of Agricultural Sciences, NJV, SE 901 83, Umeå, Sweden
M. G. Conceição
Affiliation:
Department of Animal Science, Federal Rural University of Pernambuco, 52171900, Recife, PE, Brazil
R. N. Gomes
Affiliation:
Department of Animal Science, Federal Rural University of Pernambuco, 52171900, Recife, PE, Brazil
H. F. A. Nascimento
Affiliation:
Department of Animal Science, Federal Rural University of Pernambuco, 52171900, Recife, PE, Brazil
M. A. Ferreira
Affiliation:
Department of Animal Science, Federal Rural University of Pernambuco, 52171900, Recife, PE, Brazil
*
Author for correspondence: J. C. C. Chagas, E-mail: juanachagas@gmail.com

Abstract

The use of cactus cladodes in animal feed is well-established in semi-arid areas. The cactus Nopalea cochenillifera (L.) Salm-Dyck cladodes (Nopalea) have high acceptability amongst dairy cows and are resistant to carmine cochineal insects (Dactylopius opuntiae Cockerell), a problem in semi-arid regions, but in regions of prolonged drought, it has lower productivity compared with the cactus Opuntia stricta (Haw.) Haw cladodes (Opuntia), which is also resistant to the insect. The objective of the current study was to evaluate the intake and content of digestible material of dry matter (DM) and its components, feeding behaviour, microbial protein synthesis, nitrogen balance, blood parameters, performance and milk composition of Holstein cows fed a control diet, containing either Nopalea or Opuntia associated with different concentrate levels (225, 275, 325 and 375 g/kg). Ten cows with an initial average milk production of 20 ± 2.1 kg/day were distributed into a double 5 × 5 Latin square design. Diets containing 775 g roughage/kg and 225 g concentrate/kg promoted similar responses to the analysed variables regardless of the cactus cladode used, except for digestibility of neutral detergent fibre. Diets containing higher proportions of concentrate (325 and 375 g/kg) promoted greater DM intake and 3.5% fat-corrected milk yield. The diet containing Opuntia at 775:225 g/kg roughage:concentrate proportion is as effective as the control diet for Holstein cows producing 20 kg of milk/day. To promote greater milk production, higher proportions of concentrate should be added to diets using Opuntia.

Type
Animal Research Paper
Copyright
Copyright © Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acharya, IP, Schingoethe, DJ, Kalscheur, KF and Casper, DP (2015) Response of lactating dairy cows to dietary protein from canola meal or distillers grains on dry matter intake, milk production, milk composition, and amino acid status. Canadian Journal of Animal Science 95, 267279.Google Scholar
Albright, JL (1993) Feeding behavior of dairy cattle. Journal of Dairy Science 76, 485498.Google Scholar
AOAC (2005) Official Methods of Analysis. Arlington, VA, USA: AOAC.Google Scholar
AOCS (2004) Official Methods and Recommended Practices of the American Oil Chemists’ Society. Champaign, IL, USA: AOCS.Google Scholar
Ben Salem, H, Nefzaoui, A and Ben Salem, L (2002) Supplementing spineless cactus (Opuntia ficus-indica f. inermis) based diets with urea-treated straw or oldman saltbush (Atriplex nummularia). Effects on intake, digestion and sheep growth. Journal of Agricultural Science, Cambridge 138, 8592.Google Scholar
Chen, XB and Gomes, MJ (1992) Estimation of Microbial Protein Supply to Sheep and Cattle Based on Urinary Excretion of Purine Derivatives: An Overview of Technical Details. Occasional publication. Aberdeen, UK: International Feed Research Unit, Rowett Research Institute.Google Scholar
Chizzotti, ML, Valadares Filho, SC, Valadares, RFD, Chizzotti, FHM and Tedeschi, LO (2008) Determination of creatinine excretion and evaluation of spot urine sampling in Holstein cattle. Livestock Science 113, 218225.Google Scholar
de Almeida, GAP, Ferreira, MA, Silva, JL, Chagas, JCC, Véras, ASC, Barros, LJA and de Almeida, GLP (2018) Sugarcane bagasse as exclusive roughage for dairy cows in smallholder livestock system. Asian-Australasian Journal of Animal Science 31, 379385.Google Scholar
Dixon, RM and Stockdale, CR (1999) Associative effects between forages and grains: consequences for feed utilization. Australian Journal of Agricultural Research 50, 757773.Google Scholar
Dubeux Júnior, JCB, Santos, MVF, Mello, ACL, Cunha, MV, Ferreira, M, Santos, DC, Lira, M and Silva, MC (2015) Forage potential of cacti on drylands. Acta Horticulturae 1067, 181186.Google Scholar
Dulphy, JP, Remond, B and Theriez, M (1980) Ingestive behaviour and related activities in ruminants. In Ruckebush, Y and Thivend, P (eds), Digestive Physiology and Metabolism in Ruminants. Dordrecht, The Netherlands: Springer, pp. 103122.Google Scholar
Estrada, JIC, Delagarde, R, Faverdin, P and Peyraud, JL (2004) Dry matter intake and eating rate of grass by dairy cows is restricted by internal, but not external water. Animal Feed Science and Technology 114, 5974.Google Scholar
FAO (2017) Crop Ecology, Cultivation and Uses of Cactus Pear. Rome, Italy: FAO and ICARDA.Google Scholar
Ferreira, MA, Valadares Filho, SC, Marcondes, MI, Paixão, ML, Paulino, MF and Valadares, RFD (2009 a) Avaliação de indicadores em estudos com ruminantes: digestibilidade. Revista Brasileira de Zootecnia 38, 15681573.Google Scholar
Ferreira, MA, Silva, MF, Bispo, SV and Azevedo, M (2009 b) Estratégias na suplementação de vacas leiteiras no semi-árido do Brasil. Revista Brasileira de Zootecnia 38, 322329.Google Scholar
González, FD, Muiño, R, Pereira, V, Campos, R and Benedito, JL (2011) Relationship among blood indicators of lipomobilization and hepatic function during early lactation in high-yielding dairy cows. Journal of Veterinary Science 12, 251255.Google Scholar
Hall, MB (2003) Challenges with non-fibre carbohydrate methods. Journal of Animal Science 81, 32263232.Google Scholar
International Dairy Federation (IDF) (1996) Whole Milk. Determination of Milk Fat, Protein and Lactose Content. Guide for the Operation of Mid Infra-Red Instruments. Brussels, Belgium: IDF.Google Scholar
Koopen, W (1948) Climatologia, com um Estúdio de los Clima de la Tierra. México: Fondo de Cultura Economica.Google Scholar
Licitra, G, Hernandez, TM and Van Soest, PJ (1996) Standardization of procedures for nitrogen fractionation of ruminant feeds. Animal Feed Science and Technology 57, 347358.Google Scholar
Lira, MA, Santos, DC and Silva, MC (2011) Genética e melhoramento da palma forrageira. In Congresso Brasileiro de Palma e Outras Cactáceas, 2, Anais, Garanhuns, Brasil, 2011. Garanhuns, Brazil: Universidade Federal Rural de Pernambuco. Santos MVF Pp. 22–26.Google Scholar
Martin, P and Baterson, P (2007) Measuring Behaviour: An Introductory Guide, 3rd Edn. Cambridge, UK: Cambridge University Press.Google Scholar
Monteiro, CCF, Melo, AAS, Ferreira, MA, Campos, JMS, Souza, JSR, Silva, ETS, Andrade, RPX and Silva, EC (2014) Replacement of wheat bran with spineless cactus (Opuntia fícus indica Mill cv Gigante) and urea in the diets of Holstein x Gyr heifers. Tropical Animal Health and Production 46, 11491154.Google Scholar
National Research Council (NRC) (2001) Nutrient Requirements of Dairy Cattle. Washington, DC, USA: NRC.Google Scholar
Nefzaoui, A, Louhaichi, M and Ben Salem, H (2014) Cactus as a tool to mitigate drought and to combat desertification. Journal of Arid Land Studies 24, 121124.Google Scholar
Rocha Filho, RR (2012) Palma gigante e genótipos resistentes à cochonilha do carmim em dietas para ruminantes (PhD thesis), Universidade Federal Rural de Pernambuco, Brazil.Google Scholar
Santos, DC, Lira, MA, Silva, MC, Cunha, MV, Pereira, VLA, Farias, I and Felix, AC (2008) Características agronômicas de clones de palma resistentes a cochonilha do carmim em Pernambuco. In Queiroz MAA and Bezerra HFC (eds), Congresso Nordestino de Produção Animal, 2008, Aracaju. Anais do V Congresso Nordestino de Produção Animal. Aracaju: SNPA, pp. 14.Google Scholar
Santos, RD, Neves, ALA, Santos, DC, Pereira, LGR, Gonçalves, LC, Ferreira, AL, Costa, CTF, Araújo, GGL, Scherer, CB and Sollenberger, L (2018) Divergence in nutrient concentration, in vitro degradation and gas production potential of spineless cactus genotypes selected for insect resistance. Journal of Agricultural Science, Cambridge 156, 450456.Google Scholar
SAS Institute (2009) SAS/STAT: user's guide. Version 9.2. Cary, NC, USA: SAS Institute.Google Scholar
Shackleton, RT, Witt, ABR, Piroris, FM and van Wilgen, BW (2017) Distribution and socio-ecological impacts of the invasive alien cactus Opunita stricta in Eastern Africa. Biological Invasions 19, 24272441.Google Scholar
Silva, TGF, Primo, JTA, Silva, SMS, Moura, MSB, Santos, DC, Silva, MC and Araújo, JEM (2014) Indicadores de eficiência do uso da água e de nutrientes de clones de palma forrageira em condições de sequeiro no Semiárido brasileiro. Bragantia 73, 184191.Google Scholar
Silva, ETDS, Melo, AASD, Ferreira, MDA, Oliveira, JCVD, Santos, DCD, Silva, RC and Inácio, JG (2017) Acceptability by Girolando heifers and nutritional value of erect prickly pear stored for different periods. Pesquisa Agropecuária Brasileira 52, 761767.Google Scholar
Silva, RC, Ferreira, MA, Oliveira, JCV, Santos, DC, Gama, MAS, Chagas, JCC, Inácio, JG, Silva, ETS and Pereira, LGR (2018) Orelha de Elefante Mexicana (Opuntia stricta [Haw.] Haw.) spineless cactus as an option in crossbred dairy cattle diet. South African Journal of Animal Science 48, 516525.Google Scholar
Sklan, D, Ashkenazi, R, Braun, A, Devorin, A and Tabori, K (1992) Fatty acids, calcium soaps of fatty acids and cottonseeds fed to high yielding cows. Journal of Dairy Science 75, 24632472.Google Scholar
Torres, LCL, Ferreira, MA, Guim, A, Vilela, MS, Guimarães, AV and Silva, EC (2009) Substituição da palma-gigante por palma-miúda em dietas para bovinos em crescimento e avaliação de indicadores internos. Revista Brasileira de Zootecnia 38, 22642269.Google Scholar
Valadares Filho, SC and Valadares, RDF (2001) Recentes avanços em proteína na nutrição de vacas leiteiras. In Guimarães, JD (ed.), II Simleite: Simpósio Internacional: Novos Conceitos em Nutrição. Lavras, Brazil: Anais, pp. 229247.Google Scholar
Valente, TNP, Detmann, E and Sampaio, CB (2015) Review: recent advances in evaluation of bags made from different textiles used in situ ruminal degradation. Canadian Journal of Animal Science 95, 493498.Google Scholar
Van Soest, PJ (1994) Nutritional Ecology of the Ruminant, 2th Edn. Ithaca, NY, USA: Cornell University Press.Google Scholar
Van Soest, PJ, Robertson, JB and Lewis, BA (1991) Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74, 35833597.Google Scholar
Vasconcelos, AM, Leão, MI, Valadares Filho, SC, Valadares, RFD, Dias, M and Morais, DAEF (2010) Parâmetros ruminais, balanço de compostos nitrogenados e produção microbiana de vacas leiteiras alimentadas com soja e seus subprodutos. Revista Brasileira de Zootecnia 39, 425433.Google Scholar
Verbic, J, Chen, XB, Macleod, NA and Orskov, ER (1990) Excretion of purine derivatives by ruminants. Effect of microbial nucleic acid infusion on purine derivative excretion by steers. Journal of Agricultural Science, Cambridge 114, 243248.Google Scholar