Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-rz424 Total loading time: 0.202 Render date: 2021-02-28T02:53:49.119Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Activity of cytoplasmic acetyl-CoA hydrolase in sheep liver and its potential role in heat production

Published online by Cambridge University Press:  27 March 2009

N. S. Jessop
Affiliation:
Department of Agriculture, University of Edinburgh, King's Buildings, West Mains Road, Edinburgh EH9 3JGUK
N. D. Scollan
Affiliation:
Department of Agriculture, University of Edinburgh, King's Buildings, West Mains Road, Edinburgh EH9 3JGUK
M. J. Souter
Affiliation:
The Rowett Research Institute, Bucksburn, Aberdeen AB2 9SBUK
B. Crabtree
Affiliation:
The Rowett Research Institute, Bucksburn, Aberdeen AB2 9SBUK

Summary

Acetyl-CoA hydrolase which is stimulated by adenosine-5′-triphosphate is present in the cytoplasm of ovine liver and, unlike in certain others species, is not inactivated by cold. It is suggested that this enzyme is involved in a substrate cycle between acetate and acetyl-CoA. The heat produced as a result of such cycling may be as much as 2·5% of basal heat production and may be partly responsible for the increased heat increment that often follows the ingestion of diets that provide large quantities of acetate.

Type
Animals
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below.

References

Crabtree, B., Marr, S. A., Anderson, S. E. & MacRae, J. C. (1987). Measurement of the rate of substrate cycling between acetate and acetyl-CoA in sheep muscle in vivo. Biochemical Journal 243, 821827.CrossRefGoogle ScholarPubMed
Gill, M., Thornley, J. H. M., Black, J. L., Oldham, J. D. & Beever, D. E. (1984). Simulation of the metabolism of absorbed energy-yielding nutrients in young sheep. British Journal of Nutrition 52, 621649.CrossRefGoogle Scholar
Jessop, N. S., Smith, G. H. & Crabtree, B. (1986). Measurement of a substrate cycle between acetate and acetyl-CoA in rat hepatocytes. Biochemical Society Transactions 14, 146147.CrossRefGoogle Scholar
Knowles, S. E., Jarrett, I. G., Filsell, O. H. & Ballard, F. J. (1974). Production and utilisation of acetate in mammals. Biochemical Journal 142, 401411.CrossRefGoogle Scholar
Lienhard, G. E. & Secemski, I. I. (1973). P1, P5-Di-(adenosine-5′)pentaphosphate, a potent multisubstrate inhibitor of adenylate kinase. Journal of Biological Chemistry 248, 11211123.Google Scholar
MacRae, J. C. & Lobley, G. E. (1982). Some factors influencing thermal energy losses during the metabolism of ruminants. Livestock Production Science 9, 447456.CrossRefGoogle Scholar
Matsunaga, T., Isohashi, F., Nakanishi, Y. & Sakamoto, H. (1985). Physiological changes in the activities of extramitochondrial acetyl-CoA hydrolase in the liver of rats under various metabolic conditions. European Journal of Biochemistry 152, 331335.CrossRefGoogle ScholarPubMed
Pethick, D. W., Lindsay, D. B., Barker, P. J. & Northrop, A. J. (1981). Acetate supply and utilisation by the tissues of sheep in vivo. British Journal of Nutrition 46, 97110.CrossRefGoogle ScholarPubMed
Prass, R. L., Isohashi, F. & Utter, M. F. (1980). Purification and characterisation of an extramitochondrial acetyl coenzyme A hydrolase from rat liver. Journal of Biological Chemistry 255, 52155223.Google Scholar
Rabkin, M. & Blum, J. J. (1985). Quantitative analysis of intermediary metabolism in hepatocytes incubated in the presence and absence of glucagon with a substrate mixture containing glucose, ribose, fructose, alanine and acetate. Biochemical Journal 225, 761786.CrossRefGoogle ScholarPubMed
Soling, H. D. & Rescher, C. (1985). On the regulation of cold-labile cytosolic and of mitochondrial acetyl-CoA hydrolase in rat liver. European Journal of Biochemistry 147, 111117.CrossRefGoogle ScholarPubMed

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 4 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 28th February 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Activity of cytoplasmic acetyl-CoA hydrolase in sheep liver and its potential role in heat production
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Activity of cytoplasmic acetyl-CoA hydrolase in sheep liver and its potential role in heat production
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Activity of cytoplasmic acetyl-CoA hydrolase in sheep liver and its potential role in heat production
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *