Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-19T05:12:56.637Z Has data issue: false hasContentIssue false

15N-determined dinitrogen fixation capacity of common bean (Phaseolus vulgaris) cultivars under water stress

Published online by Cambridge University Press:  27 March 2009

J. Z. Castellanos
Affiliation:
Campo Experimental Bajio-INIFAP, Apartado Postal 112, CP 38000, Celaya, Gto., México
J. J. Peña-Cabriales
Affiliation:
Centro de Investigaciones γ Estudios Avanzados del IPN, Apartado Postal 629, Irapuato, Gto., México
J. A. Acosta-Gallegos
Affiliation:
Campo Experimental Bajio-INIFAP, Apartado Postal 112, CP 38000, Celaya, Gto., México

Summary

The effect of water stress on nitrogen fixation in seven common bean (Phaseolus vulgaris L.) genotypes was investigated in Celaya, Gto., Mexico, in 1991. Beans were grown under four moisture regimes: (1) well-irrigated, control, (2) with water stress during the vegetative stage, (3) with water stress during the reproductive stage and (4) with water stress during the whole growing cycle. Biological nitrogen fixation was measured by 15N-isotope dilution using sorghum as a reference crop. Nodulation and N2-fixation data showed genotypic differences in response to water stress. Under non-stressed conditions, cv. Bayocel fixed the most nitrogen (85 kg/ha) and cultivar Flor de Mayo Baji'o the least (33 kg/ha). Under water stress at the reproductive stage, these cultivars fixed 9 and 6 kg N/ha, respectively. Water stress during the reproductive stage reduced nodulation by an average of 43% with no recovery after rewatering. Water stress during the reproductive stage had a greater effect on N2-fixation than on grain yield; in comparison to the control, N2-fixation was reduced to one sixth while grain yield was only reduced by 50%.

Type
Crops and Soils
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abdel-Ghaffa, A. S., Altar, M. H., El Halfawe, A., & Abdel Salam, A. (1982). Effects of nodulation, nitrogen fertilizer, salinity and water stress on symbiotic N2 fixation by Vicia faba and Phaseolus vulgaris L. In Biological Nitrogen Fixation Technology for Tropical Agriculture (Eds Graham, P. H. & Harris, S. C.), pp. 153159Cali, Colombia: Centro Internacional de Agricultura Tropical.Google Scholar
Acosta-Gallegos, J. A. & Adams, M. W. (1991). Plant traits and yield stability of dry bean (Phaseolus vulgaris)cultivars under drought stress. Journal of Agricultural Science, Cambridge 117, 213219.CrossRefGoogle Scholar
Albrecht, S. L., Bennett, J. M. & Boote, K. J. (1984). Relationship of nitrogenase activity to plant water stress in field-grown soybeans. Field Crops Research 8, 6171CrossRefGoogle Scholar
Castellanos, J. Z. & Acosta-Gallegos, J. A. (1992). Calidad de cocción y contenido de proteina de 154 genotipos de frijol provenientes del altiplano semiárido. Agrociencia, Serie Fitociencia 3(1), 5564Google Scholar
Danso, S. K. A., Hardarson, G. & Zapata, F. (1993). Misconceptions and practical problems in the use of 15N soil enrichment techniques for estimating N2 fixation. Plant and Soil 152, 2552CrossRefGoogle Scholar
Durand, J.-L., Sheehy, J. E. & Minchin, F. R. (1987). Nitrogenase activity, photosynthesis and nodule water potential in soyabean plants experiencing water deprivation. Journal of Experimental Botany 38, 311321CrossRefGoogle Scholar
Fenn, L. B. & Escárzaga, R. (1976). Ammonia volatilization from surface applications of ammonium compounds on calcareous soils. V. Soil water content and method of nitrogen application. Soil Science Society of America Journal 40, 537541CrossRefGoogle Scholar
Fenn, L. B. & Escárzaga, R. (1977). Ammonia volatilization from surface applications of ammonium compounds to calcareous soils. VI. Effects of initial soil water content and quantity of applied water. Soil Science Society of America Journal 41, 358363CrossRefGoogle Scholar
Fenn, L. B. & Kissel, D. E. (1976). The influence of cation exchange capacity and depth of incorporation on ammonia volatilization from ammonium compounds applied to calcareous soils. Soil Science Society of America Journal 40, 394398CrossRefGoogle Scholar
Fried, M. &Middelboe, V. (1977). Measurement of amount of nitrogen fixed by a legume crop. Plant and Soil 47, 713715CrossRefGoogle Scholar
Giller, K. E. & Wilson, K. J. (1991). Nitogen Fixation in Tropical Cropping Systems. Wallingford: CAB International.Google Scholar
Graham, P. H. & Rosas, J. C. (1977). Growth and development of indeterminate bush and climbing cultivars of Phaseolus vulgaris L. inoculated with Rhizobium. Journal of Agricultural Science, Cambridge 88, 503508CrossRefGoogle Scholar
Hardarson, G., Bliss, F. A., Cigales-Rivero, M. R., Henson, R. A., Kipe-Nolt, J. A., Longeri, L., Manrique, A., Peña-Cabriales, J. J., Pereira, P. A. A., Sanabria, C. A. & Tsai, S. M. (1993). Genotypicvariation in biological nitrogen fixation by common bean. Plant and Soil 152, 5970CrossRefGoogle Scholar
Kirda, C., Danso, S. K. A. & Zapata, F. (1989). Temporal water stress effects on nodulation, nitrogen accumulation and growth of soybean. Plant and Soil 120, 4955CrossRefGoogle Scholar
McAuliffe, C., Chamblee, D. S., Uribe-Arango, H. & Woodhouse, W. W. Jr, (1958). Influence of inorganic nitrogen on nitrogen fixation by legumes as revealed by N15. Agronomy Journal 50, 334337CrossRefGoogle Scholar
McPherson, J., Bliss, F. A. & Rosas, J. C. (1982). Selection for enhanced nitrogen fixation in common beans (Phaseolus vulgaris). In Biological Nitrogen Fixation for Tropical Agriculture (Eds Graham, P. H. & Harris, S. C.), pp. 3944Cali, Colombia: Centro Internacional de Agricultura Tropical.Google Scholar
Pankhurst, C. E. & Sprent, J. I. (1975). Effects of water stress on the respiratory and nitrogen-fixing activity of soybean root nodules. Journal of Experimental Botany 26, 287304CrossRefGoogle Scholar
Pate, J. S. (1976). Physiology of the reaction of nodulated legumes to environment. In Symbiotic Nitrogen Fixation in Plants (Ed. Nutman, P. S.), pp. 335360New York: Cambridge University Press.Google Scholar
Peña-Cabriales, J. J. & Castellanos, J. Z. (1993). Effects of water stress on N2 fixation and grain yield of Phaseolus vulgaris L. Plant and Soil 152, 151155CrossRefGoogle Scholar
Peña-Cabriales, J. J., Grageda-Cabrera, O. A., Kola, V. & Hardarson, G. (1993). Time course of N2 fixation in common bean (Phaseolus vulgaris L.). Plant and Soil 152, 115121CrossRefGoogle Scholar
Rennie, R. J. (1986). Comparison of methods of enriching a soil with nitrogen-15 to estimate dinitrogen fixation by isotope dilution. Agronomy Journal 78, 158163CrossRefGoogle Scholar
Rennie, R. J. & Kemp, G. A. (1983). N2-fixation in field beans quantified by 15N isotope dilution. II. Effect of cultivars of beans. Agronomy Journal 75, 645649CrossRefGoogle Scholar
Saito, S. M. T., Montanheiro, M. N. S., Victória, R. L. & Reichardt, K. (1984). The effects of N fertilizer and soil moisture on the nodulation and growth of Phaseolus vulgaris. Journal of Agricultural Science, Cambridge 103, 8793CrossRefGoogle Scholar
Statistical Analysis System (1987). SAS/STAT Guide for Personal Computers, Version 6. Cary, NC: SAS Institute.Google Scholar
Smith, D. L. & Hume, D. J. (1985). Effects of irrigation and fertilizer N on N2 (C2H2) fixation and yield of white bean and soybean. Canadian Journal of Plant Science 65, 307316CrossRefGoogle Scholar
Smith, D. L., Duack, M. & Hume, D. J. (1988). The effect of water deficit on N2 (C2H2) fixation by white bean and soybean. Canadian Journal of Plant Science 68, 957967CrossRefGoogle Scholar
Sprent, J. I. (1971). The effects of water stress on nitrogenfixing root nodules. I. Effects on the physiology of detached soybean nodules. New Phytologist 70, 917CrossRefGoogle Scholar
St Clair, D. A. (1986). Segregation, selection and population improvement for lbN-determined dinitrogen fixation ability in common bean (Phaseolus vulgaris L.). PhD thesis, University of Wisconsin, Madison.Google Scholar
Weisz, P. R., Denison, R. F. & Sinclair, T. R. (1985). Response to drought stress of nitrogen fixation (acetylene reduction) rates by field-grown soybeans. Plant Physiology 78, 525530CrossRefGoogle ScholarPubMed
White, J. W. & Izquierdo, J. (1991). Physiology of yield potential and stress tolerance. In Common Beans, Research for Crop Improvement (Eds Shoonhoven, A. Van & Voysest, O.), pp. 287382Wallingford: CAB International.Google Scholar
Witty, J. F. & Giller, K. E. (1991). Evaluation of errors in the measurement of biological nitrogen fixation using 15N fertilizer. In Stable Isotopes in Plant Nutrition, Soil Fertility and Environmental Studies, pp. 5972Vienna: FAO/ IAEA.Google Scholar
Wolyn, D. J., St Clair, D. A., DuBois, J., Rosas, J. C., Burris, R. H. & Bliss, F. A. (1991). Distribution of nitrogen in common bean (Phaseolus vulgaris L.) enotypes selected for differences in nitrogen fixation ability. Plant and Soil 138, 303311CrossRefGoogle Scholar
Zablotowicz, R. M., Focht, D. D. & Cannell, G. H. (1981). Nodulation and N fixation of field-grown California cowpeas as influenced by well-irrigated and droughted conditions. Agronomy Journal 73, 912.CrossRefGoogle Scholar