Skip to main content Accessibility help
×
Home

Land Use Implications of Expanding Biofuel Demand

  • Michael R. Dicks (a1), Jody Campiche (a1), Daniel De La Torre Ugarte (a2), Chad Hellwinckel (a2), Henry L. Bryant (a3) and James W. Richardson (a3)...

Abstract

The Renewable Fuel Standard mandates in the Energy Independence and Security Act of 2007 will require 36 billion gallons of ethanol to be produced in 2022. The mandates require that 16 of the 36 billion gallons must be produced from cellulosic feedstocks. The potential land use implications resulting from these mandates were examined using two methods, the POLYSYS model and a general equilibrium model. Results of the POLYSYS analysis indicated that 72.1 million tons of corn stover, 23.5 million tons of wheat straw, and 24.7 million acres would be used to produce 109 million tons of switchgrass in 2025 to meet the mandate. Results of the CGE analysis indicated that 10.9 billion bushels of corn grain, 71 million tons of corn stover, and 56,200 tons of switchgrass is needed to meet the mandate.

Copyright

References

Hide All
Aden, A., Ruth, M., Ibsen, K., Jechura, J., Neeves, K., Sheehan, J., and Wallace, B.Ligno-cellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis for Corn Stover.” Technical Report NRELTP-510-32438. National Renewable Energy Laboratory, Golden, CO, 2002.
Antoine, B., Gurgel, A., and Reilly, J.M.Will Recreation Demand for Land Limit Biofuels Production.” Journal of Agricultural & Food Industrial Organization, 6(2008): Article 5.
Biomass Research and Development Board. Increasing Feedstock Production for Biofuels: Economic Drivers, Environmental Implications, and the Role of Research. Internet site: http://www.brdisolutions.com/default.aspx.
Burnes, E., Wichelns, D., and Hagen, J.W.Economic and Policy Implications of Public Support for Ethanol Production in California's San Joaquin Valley.” Energy Policy 33(2005): 1155–67.
De La Torre Ugarte, D.G., Walsch, M.E., Shapouri, H., and Slinsky, S.P.The Economic Impacts of Bioenergy Crop Production on U.S. Agriculture.” United States Department of Agriculture, February 2003:141.
Du, X., Hennessy, D., and Edwards, W.A.Does a Rising Biofuels Tide Raise All Boats? A Study of Cash Rent Determinants for Iowa Farmland under Hay and Pasture.” Journal of Agricultural & Food Industrial Organization, 6(2008): 123.
Durante, D., and Miltenberger, M.Net Energy Balance of Ethanol Production.” Ethanol Across America (Fall 2004): 112.
Elobeid, A., Tokgoz, S., Hayes, D.J., Babcock, B.A., and Hart, C.E. “The Long-Run Impact of Corn—Based Ethanol on the Grain, Oilseed, and Livestock Sectors: A Preliminary Assessment.” CARD Briefing Paper 06-BP 49, November 2006.
Epplin, F.MCost to Produce and Deliver Switchgrass Biomass to an Ethanol-Conversion Facility in the Southern Plains of the United States.” Biomass and Bioenergy 11(1996): 459–67.
European Federation for Transportation and the Environment. Biofuels and Land Use Change Fact Sheet. Internet site: http://www.trans-portenvironment.org/News/2008/11/Biofuels-and-land-use-change-a-debate/ (Accessed November 2008).
Hemdon, C.W. JrThe Ethanolization of Agriculture and the Roles of Agricultural Economists.” Journal of Agricultural and Applied Economics 40,2(2008:403–14.
Hertel, T.W Global Trade Analysis: Modeling and Applications. Cambridge: Cambridge University Press, 2007.
Kenkel, P., Godsey, C., Epplin, F., Gregory, M., Holcomb, R., and Huhnke, R.Potential for Production of Biofuel Feedstocks in Oklahoma.” Working Paper. Department of Agricultural Economics, Oklahoma State University, 2006.
McAloon, A., Taylor, F., and Yee, W.Determining the Cost of Producing Ethanol from Corn Starch and Lignocellulosic Feedstocks.” Technical Report NREL/TP-580-28893. National Renewable Energy Laboratory, 2000.
McDonald, S., Robinson, S., and Theirfelder, K.Impact of Switching Production to Bioenergy Crops: The Switchgrass Example.” Energy Economics 28(2006:243–65.
McDonald, S., and Theirfelder, K. “Deriving a Global Social Accounting Matrix from GTAP Version 5 and 6 Data.” GTAP Technical Paper, No. 22. 2004.
Mills, K., Dicks, M.R., Lewis, D., and Moulton, R.Methods for Assessing Agricultural-Forestry Land Use Changes.” OAES Research Report P-928, Oklahoma State University, November, 1992.
Pimental, D. Ethanol Fuel from Corn Faulted as Unsustainable Subsidized Food Burning. Internet site: http://healthandenergy.com/ethanol.htm (Accessed June 2006).
Pollack, A.Scientists as Custom Tailors of Genetics.” The New York Times, September 8, 2006, p. CI.
Ragan, H., and Kenkel, P.The Potential Impact of Biofuel Production on Crop Production in the Southern Plains.” Working Paper. Department of Agricultural Economics, Oklahoma State University, 2007.
Ray, D.E., De La Torre Ugarte, D.G., Dicks, M.R., and Tiller, K.H.The POLYSYS Modeling System Framework: A Documentation.” Agricultural Policy Analysis Center Report, University of Tennessee, 1994.
Redfearn, D.D., and Bidwell, T.G.Stocking Rate: The Key to Successful Livestock Production.” Oklahoma Cooperative Extension Service Report PSS-2871, July 2003.
Shapouri, H., and Gallagher, P. USDA's 2002 Cost—of—Production Survey. U.S. Dept of Agriculture, Office of Energy Policy and New Uses, 2005.
Tenenbaum, D.JHarvesting the Potential of Biomass.” Environmental Health Perspectives 113,11(2005):A750–53.
Tiffany, D.G., and Eidman, V.R.Factors Associated With Success of Fuel Ethanol Producers.” Staff Paper P03—07. Department of Applied Economics, University of Minnesota, St. Paul, 2003.
Tweeten, L., and Thompson, S.R.Long—term Global Agricultural Output Supply— Demand Balance and Real Farm and Food Prices.” The Ohio State University Working Paper: AEDE-WP 0044-08. December, 2008.
Tyner, W., and Taheripour, F.Biofuels, Policy Options, and their Implications: Analysis Using Partial and General Equilibrium Approaches.” Journal of Agricultural & Food Industrial Organization, 6,9(2008).
USDA. NASS State Crop Production Statistics. Washington, DC: United States Department of Agriculture, 2006.
Wallace, R., Ibsen, K., McAloon, A., and Yee, W.Feasibility Study for Co-Locating and Integrating Ethanol Production Plants from Corn Starch and Lignocellulosic Feedstocks.” NREL/TP-510-37092, USDA-ARS 1935-41000-055-00D, A Joint Study Sponsored by the U.S. Department of Agriculture and U.S. Department of Energy, 2005.
Wilson, M.Runnin' on Empty.” Farm Futures (July/August 2006): 1116.
Wooley, R., Ruth, M., Sheehan, J., Ibsen, K., Majdeski, H., and Galvez, A.Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-Current Dilute Acid Pre-hydrolysis and Enzymatic Hydrolysis Current and Futuristic Scenarios.” National Renewable Energy Laboratory, NREL/TP-580-26157. 1999.

Keywords

Land Use Implications of Expanding Biofuel Demand

  • Michael R. Dicks (a1), Jody Campiche (a1), Daniel De La Torre Ugarte (a2), Chad Hellwinckel (a2), Henry L. Bryant (a3) and James W. Richardson (a3)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed