Skip to main content Accessibility help
×
Home

Validation of neuropsychological tests for the China Health and Retirement Longitudinal Study Harmonized Cognitive Assessment Protocol

  • Qinqin Meng (a1), Huali Wang (a2), John Strauss (a3), Kenneth M. Langa (a4), Xinxin Chen (a1), Mingwei Wang (a5), Qiumin Qu (a6), Wei Chen (a7), Weihong Kuang (a8), Nan Zhang (a9), Tao Li (a2), Yafeng Wang (a1) and Yaohui Zhao (a10)...

Abstract

Objective:

To compare and validate neurocognitive tests in the Harmonized Cognitive Assessment Protocol (HCAP) for the China Health and Retirement Longitudinal Study (CHARLS), and to identify appropriate tests to be administered in future waves of CHARLS.

Methods:

We recruited 825 individuals from the CHARLS sample and 766 subjects from hospitals in six provinces and cities in China. All participants were administered the HCAP-neurocognitive tests, and their informants were interviewed regarding the respondents’ functional status. Trained clinicians administered the Clinical Dementia Rating scale (CDR) to assess the respondents’ cognitive status independently.

Results:

The testing protocol took an average of 58 minutes to complete. Refusal rates for tests of general cognition, episodic memory, and language were less than 10%. All neurocognitive test scores significantly correlated with the CDR global score (correlation coefficients ranged from 0.139 to 0.641). The Mini-Mental State Examination (MMSE), the Health and Retirement Study (HRS) - telephone interview for cognitive status (TICS), community screening instrument for dementia (CSI-D) for respondent, episodic memory and language tests each accounted for more than 20% of the variance in global CDR score (p < 0.001) in bivariate tests. In the CHARLS subsample, age and education were associated with neuropsychological performance across most cognitive domains, and with functional status.

Conclusion:

A brief set of the CHARLS-HCAP neurocognitive tests are feasible and valid to be used in the CHARLS sample and hospital samples. It could be applied in the future waves of the CHARLS study, and it allows estimating the prevalence of dementia in China through the population-based CHARLS.

Copyright

Corresponding author

Correspondence should be addressed to: Huali Wang, Dementia Care & Research Center, Peking University Institute of Mental Health. Phone: +86-10-82801983; Fax: +86-10-62011769. Email: huali_wang@bjmu.edu.cn;
Yaohui Zhao, National School of Development, Peking University. Phone/Fax: +86-10-62754803. Email: yhzhao@nsd.pku.edu.cn.

Footnotes

Hide All

Contributed equally

Footnotes

References

Hide All
Arnáiz, E. and Almkvist, O. (2003). Neuropsychological features of mild cognitive impairment and preclinical Alzheimer’s disease. Acta Neurologica Scandinavica, 107(Suppl. 179), 3441. doi: 10.1034/j.1600-0404.107.s179.7.x
Cerami, C. et al. (2017). Clinical validity of delayed recall tests as a gateway biomarker for Alzheimer’s disease in the context of a structured 5-phase development framework. Neurobiology of Aging, 52, 153166. doi: 10.1016/j.neurobiolaging.2016.03.034
Chan, K. Y. et al. (2013). Epidemiology of Alzheimer’s disease and other forms of dementia in China, 1990–2010: a systematic review and analysis. The Lancet, 381, 20162023. doi: 10.1016/S0140-6736(13)60221-4
Chan, T. S. F. F. et al. (2003). Validity and applicability of the Chinese version of community screening instrument for dementia. Dementia and Geriatric Cognitive Disorders, 15, 1018. doi: 10.1159/000066672
De Jager, C. A., Budge, M. M. and Clarke, R. (2003). Utility of TICS-M for the assessment of cognitive function in older adults. International Journal of Geriatric Psychiatry, 18, 318324. doi: 10.1002/Gps.830
Ding, D. et al. (2015). Prevalence of mild cognitive impairment in an urban community in China: a cross-sectional analysis of the Shanghai Aging Study. Alzheimer’s and Dementia, 11, 300309.e2. doi: 10.1016/j.jalz.2013.11.002
Dubois, B. et al. (2014). Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. The Lancet Neurology, 13, 614629. doi: 10.1016/S1474-4422(14)70090-0
Erkinjuntti, T., Hokkanen, L. and Sulkava, R. (1988). The Blessed dementia scale as a screening test for dementia. International Journal of Geriatric Psychiatry, 3, 267273.
Fillenbaum, G. G. et al. (2008). Consortium to Establish a Registry for Alzheimer’s Disease (CERAD): the first twenty years. Alzheimer’s and Dementia, 4, 96109. doi: 10.1016/j.jalz.2007.08.005
Folstein, M. F., Folstein, S. E. and McHugh, P. R. (1975). Mini-mental state: a practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12, 189198.
Gao, M. et al. (2017). The time trends of cognitive impairment incidence among older Chinese people in the community: based on the CLHLS cohorts from 1998 to 2014. Age and Ageing, 46, 787793. doi: 10.1093/ageing/afx038
Hughes, C. P. et al. (1982). A new clinical scale for the staging of dementia. British Journal of Psychiatry, 140, 566572. doi: 10.1192/bjp.140.6.566
Jia, J. et al. (2014). The prevalence of dementia in urban and rural areas of China. Alzheimer’s & Dementia, 10, 19. doi: 10.1016/j.jalz.2013.01.012
Jorm, A. F. (1994). A short form of the Informant Questionnaire on Cognitive Decline in the Elderly (IQCODE): development and cross-validation. Psychological Medicine, 24, 145153.
Jorm, A. F. and Jacomb, P. A. (1989). The Informant Questionnaire on Cognitive Decline in the Elderly (IQCODE): socio-demographic correlates, reliability, validity and some norms. Psychological Medicine, 19, 10151022.
Kendig, H. et al. (2017). Life course influences on later life health in China: childhood health exposure and socioeconomic mediators during adulthood. SSM – Population Health, 3, 795802. doi: 10.1016/j.ssmph.2017.10.001
Lam, L. C. W. et al. (1997). Screening for dementia: a preliminary study on the validity of the Chinese version of the Blessed-Roth dementia scale. International Psychogeriatrics. Peking University, 9, 3946.
Lei, X. et al. (2012). Gender differences in cognition among older adults in China. Journal of Human Resources, 47, 951971. doi: 10.3368/jhr.47.4.951
Lei, X. et al. (2014). Gender differences in cognition in China and reasons for change over time: evidence from CHARLS. The Journal of the Economics of Ageing, 4, 4655. doi: 10.1016/j.jeoa.2013.11.001
Lemos, R. et al. (2016). Construct and diagnostic validities of the free and cued selective reminding test in the Alzheimer’s disease spectrum. Journal of Clinical and Experimental Neuropsychology, 38, 913924. doi: 10.1080/13803395.2016.1176996
Li, G. et al. (1988). Study on the brief testing for dementia: testing MMSE among urban elderly. Chinese Mental Health Journal, 2, 1318
Li, G. et al. (1989). Test of mini-mental state examination in different population. Chinese Mental Health Journal, 3, 148151
Lim, M. L. et al. (2010). Cross-cultural application of the repeatable battery for the assessment of neuropsychological status (RBANS): performances of elderly Chinese Singaporeans. Clinical Neuropsychologist, 24, 811826. doi: 10.1080/13854046.2010.490789
Lohman, D. F. (2003). The Woodcock-Johnson III and the Cognitive Abilities Test (Form 6): A Concurrent Validity Study. Itasca, IL: Riverside.
Lowery, N. et al. (2004). Normative data for the symbol cancellation test in young healthy adults. Applied Neuropsychology, 11, 216219. doi: 10.1207/s15324826an1104
Morris, J. C. (1997). Clinical dementia rating: a reliable and valid diagnostic and staging measure for dementia of the Alzheimer type. International Psychogeriatrics, 9, 173176.
Mowrey, W. B. et al. (2018). Memory binding test predicts incident dementia: results from the Einstein aging study. Journal of Alzheimer’s Disease, 62, 293304. doi: 10.3233/JAD-170714
Nitrini, R. et al. (2004). Performance of illiterate and literate nondemented elderly subjects in two tests of long-term memory. Journal of the International Neuropsychological Society, 10, 634638. doi: 10.1017/S1355617704104062
Ostrosky-Solís, F. (2004). Can literacy change brain anatomy?. International Journal of Psychology, 39, 14. doi: 10.1080/00207590344000231
Ostrosky-Solís, F. and Lozano, A. (2006). Digit span: effect of education and culture. International Journal of Psychology, 41, 333341. doi: 10.1080/00207590500345724
Prince, M. et al. (2011). A brief dementia screener suitable for use by non-specialists in resource poor settings-the cross-cultural derivation and validation of the brief Community Screening Instrument for Dementia. International Journal of Geriatric Psychiatry, 26, 899907. doi: 10.1002/gps.2622
Reitan, R. M. (1958). Validity of the trail making test as an indicator of organic brain damage. Perceptual and Motor Skills, 8, 271276. doi: 10.2466/pms.1958.8.3.271
Smith, A. (1982). Symbol Digits Modalities Test. Los Angeles, CA: Western Psychological Services.
Strauss, J. et al. (2018). Cognition and SES relationships among the mid-aged and elderly: a comparison of China and Indonesia. NBER Working Paper Series, 69. Available at: http://www.nber.org/papers/w24583
Teichmann, M. et al. (2017). Free and Cued Selective Reminding Test – accuracy for the differential diagnosis of Alzheimer‘s and neurodegenerative diseases: a large-scale biomarker-characterized monocenter cohort study (ClinAD). Alzheimer’s & Dementia, 13, 913923. doi: 10.1016/j.jalz.2016.12.014
Thies, W. H. (2015). Alzheimer’s disease neuroimaging initiative: a decade of progress in Alzheimer’s disease. Alzheimer’s and Dementia, 11, 727729. doi: 10.1016/j.jalz.2015.06.1883
Tian, J. et al. (2016). Practice guideline on the Chinese brief cognitive tests in the diagnosis of dementia. National Medical Journal of China, 96, 29452959.
Valenzuela, M. J. and Sachdev, P. (2006). Brain reserve and dementia: a systematic review. Psychological Medicine, 36, 441454. doi: 10.1017/S0033291705006264
Wang, H. et al. (2006). Application of informant questionnaire on cognitive decline in the elderly in the screening of cognitive impairment in the elderly. Chinese Journal of Geriatrics, 25, 386388.
Wechsler, D. (ed.) (1997). Wechsler Adult Intelligence Scale. 3rd ed. San Antonio, TX: The Psychological Corporation.
Woodcock, R. W. (1990). Theoretical foundations of the WJ-R measures of cognitive ability. Journal of Psychoeducational Assessment, 8, 231258. doi: 10.1177/073428299000800303
Woodcock, R. W. et al. (2003). Woodcock-Johnson III Diagnostic Supplement to the Tests of Cognitive Abilities. Itasca, IL: Riverside.
Woolf, C. et al. (2016). Can the clinical dementia rating scale identify mild cognitive impairment and predict cognitive and functional decline?. Dementia and Geriatric Cognitive Disorders, 41, 292302. doi: 10.1159/000447057
Yuan, J. et al. (2016). Incidence of dementia and subtypes: a cohort study in four regions in China. Alzheimer’s & Dementia, 12, 262271. doi: 10.1016/j.jalz.2015.02.011
Zhang, M. et al. (1990). The prevalence of dementia and Alzheimer’s disease in Shanghai, China: impact of age, gender, and education. Annals of Neurology, 27, 428437. doi: 10.1002/ana.410270412
Zhang, Z. X. et al. (2005). Dementia subtypes in China: prevalence in Beijing, Xian, Shanghai, and Chengdu. Archives of Neurology, 62, 447453. doi: 10.1001/archneur.62.3.447
Zhao, Y. et al. (2014). Cohort profile: the China health and retirement longitudinal study (CHARLS). International Journal of Epidemiology, 43, 6168. doi: 10.1093/ije/dys203
Zhou, S. et al. (2014). The influence of education on Chinese version of Montreal cognitive assessment in detecting amnesic mild cognitive impairment among older people in a Beijing rural community. The Scientific World Journal, 2014, 689456. doi: 10.1155/2014/689456

Keywords

Type Description Title
WORD
Supplementary materials

Meng et al. supplementary material
Tables S1-S10 and Figures S1-S3

 Word (3.6 MB)
3.6 MB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed